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Abstract: Unfavorable lipophilicity and water solubility cause many drug failures; therefore these
properties have to be taken into account early on in lead discovery. Commercial tools for
predicting lipophilicity usually have been trained on small and neutral molecules, and are thus
often unable to accurately predict in-house data. Using a modern Bayesian machine learning
algorithm—a Gaussian process model—this study constructs a log D; model based on 14556
drug discovery compounds of Bayer Schering Pharma. Performance is compared with support
vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on
7013 new measurements from the last months (including compounds from new projects) 81%
were predicted correctly within 1 log unit, compared to only 44% achieved by commercial
software. Additional evaluations using public data are presented. We consider error bars for
each method (model based error bars, ensemble based, and distance based approaches), and
investigate how well they quantify the domain of applicability of each model.

Keywords: Drug discovery; modeling; domain of applicability; machine learning; Bayesian; Gaussian
process; error bar; error estimation; random forest; ensemble; decision tree; support vector machine;
support vector regression; distance

1. Introduction cretion, toxicity), the octanol water partition coefficients log
Lipophilicity of drugs is a major factor in both pharma- P and logD are nowadays considered early on in lead
cokinetics and pharmacodynamics. Since a large fraction ofdiscovery.
drug failures 50%) results from an unfavorable PC- Due to the confidentiality of in-house data, makers of
ADME/T profile (absorption, distribution, metabolism, ex- predictive tools are usually not able to incorporate such data
from pharmaceutical companies. Commercial predictive tools
* Author to whom correspondence should be addressed. Mailing are therefore typically constructed using publicly available
address: Fraunhofer FIRST, Intelligent Data Analysis, measurements of relatively small and mostly neutral mol-
Kekulestrasse 7, 12489 Berlin, Germany. Tel: ecules. Often, their accuracy on the in-house compounds of
149 (0)30 6392 1882. Fax:+49 (0)30 6392 1805. E-mail:  pharmaceutical companies is relatively 1&w.
. Tetg]‘ggsﬁgra‘f]ti%%flg;rl?:”ho‘cer-de- In our work, we follow a different route to derive models
: for lipophilicity that are tailored to in-house data. We use a

* Fraunhofer FIRST. . . :
Sidalab GmbH. modern machine learning tool, a so-called Gaussian process

I'Research Laboratories of Bayer Schering Pharma AG.
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modef (GP), to obtain a nonlinear mapping from descriptors methods. To evaluate the performance of the model, one
to lipophilicity. A specific advantage of the tool is its should use a set of data that was not used in model building
Bayesian framework for model selection, that provides in any form. In the best case, the model is evaluated in a
theoretically well founded criteria to automatically choose blind test where the modelers do not have access to the held
the “right amount of nonlinearity” for modeling. We can out data. Instead, the final model is applied to the blind test
avoid extensive grid search in cross-validation or expert data by an independent evaluating team. In normal bench-
intervention to choose optimal parameter settings. Thus, themark evaluations, retuning models on held-out data is
process can be fully automated. For the first data analysispossible and typically results in too optimistic results. In
phase, structures do not need to be disclosed, since allcontrast, the blind-test strategy is nearly unbiased, because
modeling is descriptor based. “cheating”, i.e., using results on the held-out data for retuning
Apart from the high performance, the chosen modeling the model, becomes infeasible. Note however that the blind
approach shows another virtue that makes it an excellent tooltest set of data needs to be of somewhat reasonable size,
for applications in chemistry: GP models have their roots and should represent the typical application scenario of the
in Bayesian statistics, and thus can supply the user with anmodel that is to be evaluated.
error bar for each individual prediction. This quantification ~ GP models have been previously applied in computational
of the prediction uncertainty allows reduction of the error chemistry (our own recent results of modeling aqueous
rate, by discarding predictions with large error bars, or by solubility are presented in refs 5 and 6), but rather small
reconfirming the prediction with a laboratory experiment. data sets were used, and typically no blind test was
In our work, we also compare these error bars with error conducted:
bar heuristics that can be applied to other commonly used (a) Burdef learned the toxicity of compounds and their
modeling approaches. activity on muscarinic and benzodiazepine receptors using
Performance is compared with models constructed usingup to 277 compounds.

three established machine learning algorithms: support vector (15) Enot et al? predicted logP using 44 compounds from
machines, random forests, and linear ridge regression. Weg 1 2_dithiole-3-oneseries.

show that the different log® and log D; models exhibit (c) Tino et al* built GP models for log® from a public
convincing prediction performance, both on benchmark data 414 set of 6912 compounds. Here, a blind test was

and on in-house data of drug molecules. We compare our.,nqcted, but the validation set (provided by Pfizer)
results with several commercial tools, and show a large contained only 266 compounds.

improvement of performance, in particular on the in-house This study goes beyond the prior work: Our models were
classes of compounds. trained on large sets of public and in-house data (up to 14556

_ UdSITg :‘ngiCTm? ITar:énghalrgiontlhn;s, Or?ie Ca:mCOInSUIUCt compounds). A blind test was performed by an independent
0dels ot biological and chemical properties ol molecules evaluating team at Bayer Schering Pharma using a set of

frotnj allmléetd s'e';of ?;]easu(rjen?e.ﬁ@.T:\ Its' ip-clallled tra![rjmg q 7013 drug discovery molecules from recent projects, that
sel lstuse 3. ":. er edurll ?_r ying s ? 'ﬁ ical proper '?S and pave not been available to the modeling team Fraunhofer
select a prediction model. Tuning of (hyper)parameters is FIRST and idalab. To facilitate reproduction of our results

usually performed using cross-validation or resampling by other researchers, the complete list of compounds in the
public data set is included in the supporting information to
our initial communicatiort.

(3) Rasmussen, C. E; Williams, C. K. Gaussian Processes for
Machine LearningMIT Press: Cambridge, MA, 2005.

(4) Schroeter, T.; Schwaighofer, A.; Mika, S.; Ter Laak, A.; Suelzle,
D.; Ganzer, U.; Heinrich, N.; Mler, K.-R. Predicting lipophilicity 2. Estimating the Domain of Applicability of
of drug discovery molecules using gaussian process models. Models
ChemMedChemJRL: http://dx.doi.org/10.1002/cmdc.200700041. . o . .

(5) Schroeter, T.: Schwaighofer, A.: Mika, S.; Ter Laak, A.; Suelzle, A typical challenge for statistical models in the chemical
D.; Ganzer, U.; Heinrich, N.; Mier, K.-R. Estimating the domain ~ Space is to adequately determine the domain of applicability,
of applicability for machine learning gsar rmodels: A study on i.e., the part of the chemical space where the model's
aqueous solubility of drug discovery moleculésComput.-Aided  predictions are reliable. To this end several “classical”

Mol. Des, accepted for publication. URL: http://dx.doi.org/ approaches existsRange based methodse based on
10.1007/s10822-007-9125-z.

(6) Schwaighofer, A.; Schroeter, T.; Mika, S.; Laub, J.; ter Laak, A;
Suzle, D.; Ganzer, U.; Heinrich, N.; Mler, K.-R. Accurate (9) Burden, F. R. Quantitative structure-activity relationship studies
solubility prediction with error bars for electrolytes: A machine using Gaussian processds.Chem. Inf. Comput. Sc200Q 41
learning approachl. Chem. Inf. Model2007, 47 (2), 407-424. (3), 830-835.
URL http://dx.doi.org/10.1021/ci600205g. (10) Enot, D. P.; Gautier, R.; Le Marouille, J. Y. Gaussian process:

(7) Muller, K.-R.; R&sch, G.; Sonnenburg, S.; Mika, S.; Grimm, M.; an efficient technique to solve quantitative structure-property
Heinrich, N. Classifying ‘drug-likeness’ with kernel-based learning relationship problemsSAR QSAR Enron. Res.2001 12 (5),
methodsJ. Chem. Inf. Model2005 45, 249-253. 461-469.

(8) Milller, K.-R.; Mika, S.; Rasch, G.; Tsuda, K.; Scliopf, B. (11) Tino, P.; Nabney, I.; Williams, B. S.; lsel, J.; Sun, Y. Non-
An introduction to kernel-based learning algorithit<EE Trans. linear prediction of quantitative structure-activity relationships.
Neural Network2001, 12 (2), 181-201. J. Chem. Inf. Comput. S2004 44 (5), 1647 1653.
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checking whether descriptors of test set compounds exceedeverage relies on the assumption that the data follows a
the range of the respective descriptor covered in traitfig). ~ Gaussian distribution in descriptor space and computes the
A warning message is raised when this occurs. Also, Mahalanobis distance to the whole training set. Tetko
geometric methodshat estimate the convex hull of the correctly argues in ref 18 that descriptors have different
training data can be used to further detail such estinfates. relevance for predicting a specific property and concludes
Mind that both these methods are not able to detect “holes” that property specific distances (respectively similarities)
in the training data, that is, regions that are only scarcely should be used. There is an interesting parallel to Gaussian
populated with data. In principle, this can be achieved using process models: When GP models are allowed to assign
geometric methods in a suitable feature space. To the besiyeights to each descriptor that enters the model as input,
of our knowledge, there exists no published study about this they implicitly construct a property specific distance measure

kind of approach. and use it both for making predictions and for estimating
If experimental data for some new compounds are avail- prediction errors.
able, error estimates based on libeary approach® can be When estimating the domain of applicability withsemble

used. By considering the closest neighbors in the library of methodsa number of models are trained on different sets
new compounds with known measurements, it is possible of data. Typically the sets are generated by (re)sampling from
to get a rough estimate of the bias for the respective testg |arger set of available training data. Therefore the models

compound. will tend to agree in regions of the descriptor space where a
Probability density distribution based methodsuld, ot of training compounds are available and will disagree in
theoretically, be used to estimate the model reliabffitgtill, sparsely populated regions. Alternatively, the training sets

high dimensional density estimation is recognized as an for the individual models may be generated by adding noise
extremely difficult task, in particular since the behavior of o the descriptors, such that each model operates on a slightly
densities in high dimensions may be completely counterin- modified version of the whole set of descriptors. In this case
tuitive.'® the models will agree in regions where the predictions are
Distance based methodsand extrapolation mea-  not very sensitive to small changes in the descriptors and
sureg121417.1%0nsider one of a number of distance measures they will disagree in descriptor space regions where the
(Mahalanobis, Euclidean, etc.) to calculate the distance of asensitivity with respect to small descriptor changes is large.
test compound to its closest neighbor(s) or the whole training This methodology can be used with any type of model, but
set, respectively. Another way of using distance measuresensembles of ANNE 20 and ensembles of decision tr&&<
is to define a threshold and count the number of training (“random forests”, Breimai) are most commonly used.
compounds closer than the threshold. Hotelling's test or the  The idea behindayesian methods to treat all quantities
involved in modeling as random variables. By means of
(12) Tropsha, A. Variable selection gsar modeling, model validation, Bayesian inference, the priori assumptions about param-
and virtual screening. IMAnnual Reports in Computational  eters are combined with the experimental data, to obtain the
Chemistry Spelimeyer, D. C., Ed.; Elsevier: Amsterdam, 2006; g posterioriknowledge. Hence, such models naturally output
w3 \4?):% ;\?vh.a%zr gPpHi%le:" Shi. L: Fang, H.: Perkins, R, 2 probability distribution, instead of the “point prediction”
oo X P S ' in conventional learning methods. Regions of high predictive

Assessment of prediction confidence and domain extrapolation ) - . .
of two structure-activity relationship models for predicting Vartance indicate not only compounds outside the domain

estrogen receptor binding activignuiron. Health Perspec2004 of applicability but also regions of contradictory or scarce

112 (12), 1249-1254. measurements. The most simple and also most widely used
(14) Netzeva, T. I.; Worth, A. P; Aldenberg, T.; Benigni, R.; Cronin, method is the naive Bayes classiffé#® Gaussian process

M. T. D.; Gramatica, P.; Jaworska, J. S.; Kahn, S.; Klopman, G.;

Marchant, C. A.; Myatt, G.; Nikolova-Jeliazkova, N.; Patlewicz,

G. Y.; Perkins, R.; Roberts, D. W.; Schultz, T. W.; Stanton, D. (19) Gdler, A. H.; Hennemann, M.; Keldenich, J.; Clark, T. In silico

T.; van de Sandt, J. J. M.; Tong, W.; Veith, G.; Yang, C. Current prediction of buffer solubility based on quantum-mechanical and
status of methods for defining the applicability domain of hgsar- and topology-based descriptdrsChem. Inf. ModeR006
(quantitative) structure-activity relationshipSltern. Lab. Anim. 46 (2), 648-658.

2005 33 (2), 1—-19. (20) Manallack, D. T.; Tehan, B. G.; Gancia, E.; Hudson, B. D.; Ford,

(15) Kihne, R.; Ebert, R.-U.; Sclimmann, G. Model selection based M. G,; Livingstone, D. J.; Whitley, D. C.; Pitt, W. R. A consensus
on structural similarity-method description and application to water neural network-based technique for discriminating soluble and
solubility prediction.J. Chem. Inf. Model2006 46, 636—641. poorly soluble compounds. Chem. Inf. ModeR003 43, 674—

(16) Silverman, B. W.Density Estimation for Statistics and Data 679.

Analysis Number 26 in Monographs on Statistics and Applied (21) Breiman, L. Random forestslachine Learning2001, 45, 5—32.
Probability; Chapman & Hall: London, 1986. URL: http://dx.doi.org/10.1023/A:1010933404324.

(17) Bruneau, P.; McElroy, N. R. Generalized fragment-substructure (22) Bender, A.; Mussa, H. Y.; Glen, R. C. Screening for dihydrofolate
based property prediction methad.Chem. Inf. ModeR004 44, reductase inhibitors using molprint 2d, a fast fragment-based
1912-1928. method employing the nave bayesian classifier: Limitations of

(18) Tetko, I. V.; Bruneau, P.; Mewes, H.-W.; Rohrer, D. C.; Poda, the descriptor and the importance of balanced chemistry in training
G. I. Can we estimate the accuracy of ADME-tox predictions? and test setsl. Biomol. Screening005 10 (7), 658-666. URL:
Drug Discaery Today2006 11 (15/16), 706-707. http://jbx.sagepub.com/cgi/content/abstract/10/7/658.
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(a) Random forest (b) Ridge Regression (c) S.V. Machine (d) Gaussian Process

(ensemble) (distance based) (distance based) (Bayesian)

Figure 1. The four different regression models employed in this study are trained on a small number of noisy measurements
(black crosses) of the sine function (blue line). Predictions from each model are drawn as solid red lines, while dashed red lines
indicate errors estimated by the respective model (in case of the Gaussian process and random forest) or a distance based
approach (in case of the support vector machine and ridge regression model).

synthesize measure model
sample 109D = {raining

I

~1600 descriptors

regression and classification are more sophisticated Bayesian
methods, see section 3.5.4.

In the present study, we use the Bayesian Gaussian process
models, ensembles, and distance based methods. All of these Q
can handle empty regions in descriptor space and quantify CH, O
their confidence, rather than just marking some predictions
as possibly unreliable. Confidence estimates will be presented
in a form that is intuitively understandable to chemists and The support vector machine, Figure 1c, adapts to the

other smenust;. ] ) nonlinearity in the input data and extrapolates well. The error
2.1. One-Dimensional Examples.Figure 1 shows a  estimation (the same distance based procedure as described
simple one-dimensional example of the four different for the real data, section 4.4) produces slightly conservative
methods of error estimation we use in this study. The sine (jarge) error bars in the region close the training points, and
function (shown as a blue line in each subplot) is to be {95 small errors when extrapolating.
learned. The available training data are 10 points marked The Gaussian process, Figure 1d, also captures the
by black crosses. These are generated by randomly choosingopjinearity in the input data and is able to extrapolate.
x-values and evaluating the sine function at these points. Wepyeicted errors are small in the region close to the training
simulate measurement noise by adding Gaussian d|str|butedp0ims and increase strongly enough in the extrapolation
random numbers with standard deviation 0.2 toytvalues. region.
The random forest, Figure 1a, does provide a reasonable
fit to the training points (yet the prediction is not smooth, 3 Methods and Data
due to the space dividing property of the decision trees).
Predicted errors are acceptable in the vicinity of the training
points, but overconfident when predictions far from the
training points are sought. It should be noted that the behavior

of error bars in regions outside of the training data dependsmc machine learning algorithms are used to “train” models,

sollel_y on the ensemble members on the boundary of th.ei.e., to infer the relationship between the descriptors and the
training data. If the ensemble members, by chance, agree in

. - experimental values for log and logDy.
their prediction, an error bar of zero would be the result. P - g g7
To make predictions for new compounds, structures are

The linear model, Figure 1b, clearly cannot fit the points a4ain converted to 3D and descriptors are calculated. From
from the nonlinear function. Therefore, the distance based he descriptors of each molecule, the model generates a
error estimations are misleading: Low errors are predicted prediction of logP and/or logD7, and in case of the Gaussian

in regions close to the training points, but the actual error is 4cess and random forest also a confidence estimate (error
quite large due to the poorly fitting model. This shows that 5

the process of error estimation should not be decoupled from 3.2. Data Preparation. 3.2.1. Multiple Measurements.

_thel actual r_nodel fitting: .The error estimate should also If multiple measurements exist for the same compound, we
indicate regions of poor fit.

Corina Dragon
3D

Figure 2. The process of model building.

3.1. Methodology Overview.The training procedure is
outlined in Figure 2. We use Coriffato generate a 3D
structure for each molecule. Molecular descriptors are
calculated using the Drag&nsoftware. Finally, a number

(24) Sadowski, J.; Schwab, C.; GasteigerCdrina ¢3.1; Erlangen,

(23) Sun, H. An accurate and interpretable bayesian classification model Germany.
for prediction of herg liability ChemMedCher006 1 (3), 315~ (25) Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, BRAGON
322. v1.2, Milano, Italy.

VOL. 4, NO. 4 MOLECULAR PHARMACEUTICS 527



articles Schroeter et al.

Table 1. Summary of the Different Setups That Are Used for Performance Evaluation?

Setup Prediction  Data
. Training . Validation
In-house log D i in—hou;; (14556)
Trzlliining o Validation
In-house validation  log D i in—house (14556) i i in—house validation (7013)
Training | Validation . )
Public log P Physprop/l;eiilstein (7926) i

2 See section 3.3 for a description and section 3.2 for details on the individual data sets.

merge them as described in the following to obtain a Physprogf and Beilsteif” databases. lo® measurements
consensus value for model building. For each compound weperformed at various pH values are often reported aslog
generate the histogram of experimental values. Characteristidn the literature, despite the fact that |dg) applies, by
properties of histograms are the spread of valyesp(ead) definition, only to a molecule in its neutral form (i.e., the
and the spread of the bin heightsspread). If all measured  pH of the solution has to be adjusted so that the molecule is
values are similar (smajtspread), the median value is taken neutral). To avoid these wrongly reported IBgalues, the
as consensus value. If a group of similar measurements andet was restricted to compounds predicted to be completely
smaller number of far apart measurements exists, bothneutral at pH 2 to 11 by ACDLabs V9, since, for these
y-spread ana-spread are large. In this case we treat the far compounds, lod values in the given pH ranges coincide
apart measurements as outliers, i.e., we remove them andvith the correct logP values.
then use the median of the agreeing measurements as 3.2.5. Differences between In-House and Public Data.
consensus value. If an equal number of measurementsistograms of the molecular weight for each dataset are given
supports one of two (or more) far apart values (hegpread  in Figure 3. The median of the molecular weight is 227 g/mol
and zeraz-spread), we discard the compound. Initial experi- for the public dataset, 432 g/mol for the in-house set, and
ments suggested that 0.5 (on the measurements log-scale) i05 g/mol for the in-house validation set (marked by vertical
a suitable value for the threshold between small and largegreen lines in the plots). As we can see from the histogram,
y-spreads. more than 90% of the compounds in the public set have a
3.2.2. Dataset 1: In-HouseDataset 1 consists of 14556 molecular mass lower than 400 g/mol, that is well below
drug discovery compounds of Bayer Schering Pharma (Tablethe median of the molecular mass for the two in-house sets
1). log D was measured following the experimental procedure of data. In this study, we separately evaluate models on the
described in section A. public and in-house sets of data. In principle, data from
For the majority of compounds, loD was measured at internal and external sources can be combined. However,
pH = 7.0. For about 600 compounds I@ywas measured care has to be taken when evaluating models on mixed sets,
at pH = 7.4. Although for particular compounds withKp since such models typically perform well on compounds with
values close to pH= 7 one can expect deviations in I@ low molecular weight (see section 4.2) but are less accurate
of up to 0.4 (extreme case), first experiments showed thatfor the larger compounds relevant to drug discovery (see
building separate models is not necessary. No negativesection 4.3).
impact on the model accuracy was observed when the 3.3. Training and Validation Setups. 3.3.1. Cross-
measurements performed at pH7.4 are included in the  Validation. On the in-house and public set of data, models
larger set. are evaluated in leave 50% out cross-validation, i.e., the data
3.2.3. Dataset 2: In-House Validation.Dataset 2 is a  is randomly split into two halves. A model is trained on the
set of 7013 new measurements of drug discovery moleculesfirst half and evaluated on the other half. This is repeated
of Bayer Schering Pharma that were collected in the monthswith the two halves of the validation set exchanged, so that
after dataset 1 had been measured, and thus also includepredictions for all compounds in the set are generated. The
compounds from new projects. [@ywas measured follow-  overall procedure is then repeated 10 times with a different
ing the same experimental procedure as was used for dataset
1, see section A. (26) Physical/Chemical Property Database (PHYSPROR)racuse,
3.2.4. Dataset 3: PublicThis set contains measurements NY.
of log P for 7926 unique compounds extracted from the (27) Beilstein CrossFire Databag&an Ramon, CA.
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number of compounds

0 100 200 300 400 500 600 700 800 900 1000
mass

(a) Data Set 1: in-house

number of compounds

500
mass

(b) Data Set 2: in-house validation

number of compounds

300 400 500 600 700 800 800 1000
mass

(c) Data Set 3: public

Figure 3. Histograms of molecular weight. Vertical green lines
mark the median of the molecular weight of the respective
data set.

random split. Each prediction is an out-of-sample prediction,
made by a model that has not seen the particular compound
in its training data.

3.3.2. Blind Test.Gaussian process models built by the
modelers at Fraunhofer FIRST and idalab on the in-house
set of data were evaluated by researchers at Bayer Schering
Pharma on thén-housevalidation set of data. At this point
in time, the modelers had no knowledge of the nature or log
D values of the validation set. Later, the validation data was
revealed to the modelers and used as an external validation
set to assess the performance of other types of models.

3.4. Molecular Descriptors.We use the Dragon descrip-
tors by Todeschini et & They are organized in 20 blocks
and include, among others, constitutional descriptors, topo-
logical descriptors, walk and path counts, eigenvalue-based
indices, functional group counts. and atom-centered frag-
ments. A full list including references can be found onffe.

As one of their most pronounced features, Gaussian
process models allow the assignment of weights to each
descriptor that enters the model as input. The similarity for
two compounds as computed by the GP model takes into
account that théth descriptor contributes to the similarity
with weight w; (see 3.5.4). These weights are chosen
automatically during model fitting and can then be inspected
in order to get an impression of the relevance of individual
descriptors.

We found that using a small<G0) set of descriptors
results in only slightly decreased accuracy when comparing
to models built on the full set of 1664 descriptors. The error
predictions, however, turn out to be too optimistic in this
case. Including whole blocks containing important descriptors
leads to both accurate predictions and accurate error estima-
tions (see section 4.1). In this study, we used the full Dragon
blocks 1, 2, 6, 9, 12, 15, 16, 17, 18, and 20. A discussion of
the importance of individual descriptors can be found in
section 4.1.

3.5. Machine Learning Methods. 3.5.1. Introductory
Remarks. Since the application of Gaussian process regres-
sion is still relatively new in the field of chemoinformatics,
we chose to explain and illustrate the modeling idea. Support
vector machines are seen as established, but still deserve
some discussion due to interesting parallels and differences
with the Bayesian GP approach.

Linear ridge regression, decision trees, and ensembles of
trees (random forests) are considered established methods
here we mainly note how the employed implementation
differs from the original algorithm, for which the reader is
referred to the literature.

3.5.2. Linear Ridge RegressionRidge regression com-
bines a linear model with a regularization term that ef-
fectively shrinks coefficients of the model toward zero. This
is particularly important for our application since a standard

(28) Todeschini, R.; Consonni, Ylandbook of Molecular Descriptors
John Wiley & Sons, Ltd.: Chichester, 2000.

(29) Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Dragon for
windows and linux 2006. URL: http://www.talete.mi.it/help/
dragon_help/ (accessed 14 May 2006).
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Descriptor

Descriptor
Figure 4. Bayesian modeling with Gaussian processes.
linear model runs into problems when descriptors are Effectively, all the steps described above are not imple-

correlated. We choose the complexity parametethat mented by sampling, but via integral operatiénhe
controls the amount of shrinkage by grid search in nested Bayesian concept of a weighed average of functions with a

cross-validation. certain mean (lo@ prediction) and standard deviation (error
3.5.3. Random ForestA modified version of the random  bar) is, however, preserved.
forests method of Breimadhis employed. Trees are con- In order to derive the GP model prediction, febe a

structed without bagging or bootstrapping, and pruning of function that depends on a vectoof d molecular descriptors
individual trees is done using a CART-style error-size and outputs logD, i.e., f(x) ~ log D(x). We assume that
tradeoff. each possible functiori is a realization of a Gaussian
The predictive variance is calculated by averaging the stochastic process, and thus can be fully described by
variance of the predictions from the different trees in the considering pairs of compoundsandx’. By the properties
forest and the average estimated variance from training pointsof the Gaussian process, functional vali(@s), ..., f(x,) for
found at each tree leaf. any finite set ofn points form a Gaussian distribution. The
3.5.4. Gaussian Process RegressioBaussian process covariance for each pair is then given by the covariance
(GP) models have their origihiin the field of Bayesian  function,
statistics. A description of the methodology, including

mathematical derivations, can be found in Schwaighofer et cov(f(x),f(x")) = k(x,x") Q)
al® For in-depth coverage we refer the reader to a recent
book by Rasmusseh. which has a role similar to the kernel function in support

Figure 4 illustrates the principles behind GP models: vector machinés* and other kernel based learning methods.

Before having measured 0B values, any relationship ~ Any previous knowledge of the phenomenon to be predicted
between the descriptor (in this 2-dimensional example, only iS expressed in the covariance functian
one descriptor is used and plotted on #axis) and logD For n compounds the actual data consist roflog D
(y-axis) is equally likely. This is represented by an infinitely measurementsy, ..., Yo andn descriptor vectors, ..., %
large family of functions that map from descriptor space to (each of lengttd). Assuming that measurements are noisy,
log D space. The family is described byGaussian process ~ We relate then measured values to the true 18gby
prior, and 25 examples are shown in Figure 4 (left).
When training the model with lo® values for a number Y =f(x) + e 2
of molecules (symbolized by black crosses in Figure 4
(middle)), we discard (or put lower weight on) all functions Wheree is Gaussian noise with standard deviationr can
that do not pass near by these known data points. be a scalar, meaning that all measurements are equally noisy.
To predict logD values for new molecules, we just average ¢ can also be a vector, allowing, in principle, the use of a
over the functions remaining in the pool (the red line in different noise level for each individual compound. In
Figure 4 (right)) and read off the value corresponding to the practice we found it useful to assume equal measurement
new molecules’ descriptors. To predict error bars, we hoise for groups of compounds that, e.g., have been measured
calculate the standard deviation of the functions remaining in the same laboratory. In this way, model performance can
in the pool at the position given by each new molecule’s be improved and we can learn the noise level resulting from
descriptors. The@environment for all descriptor values on  different (or uniform) experimental procedures directly from
the x-axis is marked by the red region in Figure 4 (right). the date
Close to known points, the uncertainty is small, but not  Applying a number of transformations and steps of
zero: Measurements are assumed to be noisy. The uncerstatistical inferencewe find that the predicted lo® for a
tainty increases far from known points and in regions where new compouna:- follows a Gaussian distribution with mean
measurements disagree. f(x«) and standard deviation sf¢k-), with

(30) O’Hagan, A. Curve fitting and optimal design for predictidn. (31) Schikopf, B.; Smola, A. JLearning with KernelsMIT Press:
R. Stat. Soc., Ser. B: Methodologice78 40 (1), 1—42. Cambridge, MA, 2002.
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f(x.) = z?:l o K(X. ;) ©) such that the empirical error and the norm of _the weight
vector w are minimal. We employ ar-insensitive loss

stdf(x.) = \/k(x*,x*) - ZLl Ziﬂ:l K(%e%;) K(X., X)L function which does not penalize deviations. f.rom. the
(4) measured value that are smaller tharModel training is

done by solving the convex quadratic optimization problem:

Coefficientso; are found by solving a system of linear

equationsy = (K + ¢2)a, with Kj = k(x;,x). For the 1 ) n
standard deviation,;; are the elements of the matrix= min—[|w||"+C » &
(K + o2)L, whbé 2 =

Details on inferring the parameters of the covariance
function k and the measurement noisecan be found in
Schwaighofer et &.

In direct implementations, memory demand increases

quadratically with the number of data points. Recent The thresholde from the loss function manifests in the
developments of approximation and sampling technigues . N . : .
P PP Ping tu constraints. “Slack variableg’are introduced and penalized

allow the training of Gaussian process models on thousands, the obiective funcii h that deviation b th
of data points. For the data sets used in this study, we precedén €o Je::hlve bl.mct.lon fsuc i a levll_a |on| yTrEpre dan
the actual GP training by a k-means clustering, such that Ncreases e objective function only finearly. This reduces

each cluster contains up to 5000 compounds and train onethe influence of outliers in the data. The constandC

GP per cluster. When applying the model, predictions from are chosen by cros_s-yalidation. In principle, it is also possible
the individual GP models are generated and the predictiontO use more sophl_sncated approachdsat compute SVR
with the highest confidence (smallest error bar) is chosen.somuons for multiple parameter values in an efficient
3.5.5. Support Vector RegressionSupport vector ma- manner. . . )
chines for regression and classification are based on the EMPloying the so-called kernel trigk° one can gener?hze
principle of structural risk minimization. Out of a certain t© nonlinear models. Functiorfsof the formf(x) = i,

class of functions we want to find the function that minimizes %iK(i.x) + b can be generated by rewriting the liner SVM
some notion of error, measured by the so-called loss function, €quations STUCh that the descriptersnly appear inside scalar
Using a very large class of functions (i.e., a very complex Products Xi'x;). These scalar products can then be replaced
model) one can perfectly fit to the training data, but the PY @ kemel functionk(xix;), that implicitly maps the
resulting function will not generalize to new, unseen data 9€SCriptors into a high-dimensional feature-space and com-
(over-fitting). On the contrary, using a small class of putes th_e scalar product there. There are many interesting
functions (simple, e.g., linear models) one may not be able connections between SVM and GP methods. One of them

to fit the data reasonably, again resulting in inaccurate is that the valid kernel functions for support vector algorithms
predictions. are also valid covariance functions for a GP model and vice

Choosing a function class with functions of the right versa. In this study, we use support vector regression with

complexity can be achieved by regularization: We combine " RBF kemel functiofi?

the empirical loss on the training data with a penalty term

for the complexity and then minimize the sum (objective 4. Results and Discussion

function). Under certain assumptions (for example, that the 4.1 Choice of DescriptorsGaussian process models can
training and test data are sampled from the same distribution),assign weights to each descriptor that enters the model as
it can be proven that this way of choosing the function class input (see section 3.4 for details). The 30 interpretable

subject to

[f(x) —vil<e+§, §=0 i=1,..n

leads to an optimal modét.** descriptors with highest weight are clearly connected with
In the following we will first describe the idea behind |Og P and |Og D-. They include the sum of geometrica|
linear SVR and then generalize to the nonlinear case. distances between pairs of oxygen atoms, counts of various

Given a vectorx of descriptors for a compound, the functional groups [donor atoms for H-bonds (N and O); H
quantity of interesy (in our case logD) will be predicted  attached to heteroatom; hydroxyl groups; hydroxyl groups
asy = f(x). Linear SVM finds a predictof(x) = w'x + b, in phenol, enol, carboxyl; ether groups; oxygen atoms;
benzene-like rings; carbon atoms; quaternary nitrogen;
(32) Quionero-Candela, J.; Rasmussen, C. E. A unifying view of sparse tertiary amines; secondary amines], and a number of continu-

approximate Gaussian process regressioklachine Learn. Res.  0us quantities [topological polar surface area using N, O polar
2005 6 (December), 19391959. URL: http://www.jmlr.org/ contributions; topological polar surface area using N, O, S,
papers/volume6/quinonero-candela05a/quinonero-candela05a.p polar contributions; mean atomic van der Waals volume
pdf. (scaled on carbon atom); harmonic oscillator model of

33) Vapnik, V. N.Statistical Learning Th iley: New York, L . -
( )1:5;' atistical Learning TheorWiley: New Yor aromaticity index total; molar refractivity; hydrophilic fac-

37 i i
(34) Cristianini, N.; Shawe-Taylor, An Introduction to Support Vector tor;>” molecular \_Ne'ght and 11 other measures Of Size, e.g.,
Machines Cambridge University Press: Cambridge, U.K., 2000. Sum of conventional bond orders, sum of atomic van der

(35) This reference was deleted on revision. Waals volumes, and size indices].
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Figure 5. Scatter plots for GP, SVM, ridge regression, and random forests (one arbitrarily chosen cross-validation run each)
and all four commercial tools on the public data set (Physprop/Beilstein).
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Table 2. Accuracy Achieved on the Public Data Sets predictions and accurate error estimations. For, e.g., a GP
Physprop/Beilstein Using Different Machine Learning model theseurplusdescriptors will get only a small weight
Methods Compared with the Performance of Commercial during training—but the weight will not be zero. In conse-
Tools® guence the model has more information than it needs for
public data Physprop/Beilstein MAE RMSE % + 1 predicting log D; and will respond to new properties
Gaussian process 038 0.66 926 (func_tlc_mal groups etc.) of molecules by estimating a larger
linear ridge regression 0.59 0.89 84.4 pred'Ct_'on error.
support vector machine 0.40 0.71 91.8 In this study, we used the full Dragon blocks 1, 2, 6, 9,
random forest 0.52 0.82 87.6 12, 15, 16, 17, 18, and 20, thereby including constitutional
ACDLab 4 5 descriptors, topological descriptors, 2D autocorrelations,
CDLA S_Vg 0.43 0.90 89. topological charge indices, geometrical descriptors, WHIM
Wskowwin v1.41 0.25 0.90 91.6 . . .
. descriptors, GETAWAY descriptors, functional group counts,
AdmetPredictor v1.2.3 0.65 1.32 86.9 . . .
. atom-centered fragments, and molecular properties. With this
QikProp v2.2 0.76 1.23 79.6 ; . ) :
set of 904 descriptors, the model’s accuracy is only slightly
baseline: predict mean log P 1.68 2.24 40.7 smaller than the accuracy of models built on all 1664
a MAE, RMSE, and % + 1 denote the mean absolute error, the descriptors, but the computational cost and memaory require-
root mean squared error, and the percentage of compounds predicted ments are significantly reduced, and predicted error bars
with less than 1 log unit error. : ; ot : :
display close to ideal statistical properties (see section 4.4
Table 3. Accuracy Achieved Using Gaussian Process and section 4.5).
Models, Support Vector Machines, Linear Ridge 4.2. Overall Accuracy: Public Data. The accuracy
Regression, and Random Forests for the In-House achieved on the public data set using different machine
Datasets, Compared with the Performance of ACDLabs v92 learning methods is compared with the performance of
MAE RMSE % + 1 ACDLabs v9, Wskowwin v1.41, AdmetPredictor v1.2.3, and

QikProp v2.2 in Table 2. The row labeled “baseline” lists

In-House Cross-Validation the performance achieved when constantly predicting the

Gaussian process 0.41 0.66 90.7 | f the dat t Scatt lots f I thod
linear ridge regression 053 0.96 88.3 average logP of the dataset. Scatter plots for all methods
support vector machine 0.44 0.70 898 (one arbitrarily chosen cross-validation run each) and all four
random forest 0.55 0.80 8a.4 commercial tools are given in Figure 5.

The support vector machine and random forest models
ACDLabs v9 1.41 1.90 46.6

exhibit similarly high performance (91.6% respectively
baseline: predict mean log D; 1.13 1.47 53.4 87.6% correct within 1 log unit) as the three best performing
commercial tools ACDLabs v9, Wskowwin v1.41, and
AdmetPredictor v1.2.3 (86.9% to 91.6% correlet). The

In-House Blind Test

Gaussian process 0.60 0.82 81.2 . .
linear ridge regression 0.60 0.83 82.2 Gaussian process model performs slightly better (92169
support vector machine 0.58 0.81 816 than the best performing commercial tool (91.6%). The

random forest 0.74 1.00 74.8 linear ridge regression model predicted a nhumber ofRog
values as high as 10 For all plots and statistical evaluations,

ACDLabs vo 1.40 179 44.2 predictions from the linear ridge regression model were

baseline: predict mean log D; 1.17 1.51 51.7 postprocessed, setting 1.5 times the highest/lowestPlog

aMAE. RMSE, and % + 1 denote the mean absolute error, the values in th_e training data as upper/lower limits. Th_us, error
root mean squared error, and the percentage of compounds predicted measures like mean absolute error can be used in a more
with an error less than 1. meaningful way. 84.4% of all predictions were correct within

1 log unit. In general, we found that the nonlinear methods

We found that using a small set of descriptors results in gre more accurate and, in particular, produce fewer “far off”
only slightly decreased accuracy when comparing to m0d9|5predictions, as can be seen in Figure 5a,c,d.

built on the full set of 1664 descriptors. The error predictions,  Examining Figure 5eh, we find that all four commercial
however, turn out to be too optimistic. In other words: The tools produce a number of outliers. ACDLabs v9 and

log D- is predicted accurately for most compounds, but the Wskowwin v1.41 generate fewer than 10 very “far off”
model cannot correctly detect whether the test compound
has, for example, additional functional groups. These func- 36y \wang, G.; Yeung, D.-Y.; Lochovsky, F. H. Two-dimensional
tional groups might not have occurred in the training data, solution path for support vector regression. Rroceedings of
and were thus not included by the feature selection step. In ICMLO6; De Raedt, L., Wrobel, S., Eds.; ACM Press: New York,
the test case, the information about these additional functional ng 2006; |c/>p 9931000-(]'“/?'2-55 hTttpi//Vé‘(VW-icm'zocl’%orlg/icé?'_

: H : H ocuments/camera-rea wo imensiona Olu. .
groups 1S lmporta_nt since it helps to detect that these (37) Todeschini, R.; Gramatié/a, P. Linear and nonlinear funcﬁions on
compounds are different from those the model has been modeling of aqueous solubility of organic compounds by two
trained on, i.e., the error bar should increase. Including whole structure representation metho@iant. Struct. Act. Relal997
blocks containing important descriptors leads to both accurate 16, 116-125.
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Figure 6. Scatter plots for Gaussian process and ACDLabs v9 on in-house validation data in blind test (subplots a, b) and on
in-house data in cross-validation (subplots c, d).

predictions, but their lod® is overestimated by more than data including different compound classes is important. For
10 orders of magnitude. Foer50 compounds the predicted models built on the Bayer Schering Pharma in-house data,
values are too high by 2 or 3 log units. Still, the overall we present such an evaluation in the subsequent section.
performance of both ACDLabs v9 and Wskowwin v1.41is  4.3. Overall Accuracy: In-House Data.The results for
good, which is also reflected in the low MAE and RMSE, predicting logD; on Bayer Schering Pharma in-house data
see Table 2. Neither QikProp v2.2 nor AdmetPredictor v1.2.3 are listed in Table 3. The corresponding scatter plots are
produces very “far off” predictions>(10 orders of magni-  given in Figure 6. When evaluated in 2-fold cross-validation
tude). For several hundreds of compounds,Rag predicted on the in-house data (see Table 3, top), the Gaussian process
too high by 2 or 3 orders of magnitude, reducing the overall model, the support vector machine, and the linear ridge
performance (see Table 2). regression yielded good results (88.3% to 90.7% correct
All four commercial tools have been trained using a within 1 log unit), with the Gaussian process model perform-
number of compounds that are also included in the Beilstein ing best (90.7%t1). This model was then validated in blind
and Physprop databases. In these cases the correct value svaluation at Bayer Schering Pharma on a set of 7013 new
reproduced, rather than predicted. This effect can be seermeasurements from the last months. Later, the data was made
most clearly in the results for Wskowwin, where many of available to the modeling team at Fraunhofer and idalab and
the model predictions for the public data are right on the other methods were evaluated, treating the former blind test
optimal prediction line. Thus, the presented evaluation is, data as an external validation set. These results are given in
most likely, biased in favor of the commercial tools. Table 3 (bottom). Among the commercial tools that were
Our own results were obtained in 2-fold cross-validation available to us, only ACDLabs is able to calculate [Dg
(train on half of the data, evaluate on the other half), repeatedand can thus be used as a benchmark.
10 times with different random splits of the data. Therefore, =~ With ACDLabs v9, only 44.2% of the compounds are
test and training data tend to have a similar distribution acrosspredicted correctly within 1 log unit. Mind that ACD has
different compound classes. This is not the case in the typicalbeen trained on shake-flask measurements, while the in-house
application scenario of such models: In new projects, new measurements used in this study were performed with the
compound classes will be investigated, resulting in less HPLC methodology described in section A. With our tailored
accurate predictions. To get a realistic estimate of the models, we achieved 81.2% to 82.2% correct predictions.
performance on unseen data, a “blind test” evaluation on These are very good results, considering that the structures
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In a typical cross-validation run on the in-house data set,
50% of the compounds have a nearest neighbor closer than
1100 units, see Figure 7, top. In the blind test set, less than
25% of the compounds have neighbors closer that 1100 units,
see Figure 7, bottom.

This supports our hypothesis that the difference in
performance between the cross-validation results and the
blind test is caused by a large number of compounds being
dissimilar to the training set compounds. Therefore it should
be possible to achieve higher performance by focusing on
compounds that are clearly inside the domain of applicability
of the respective model. We investigate this question in
section 4.5.

4.4, Individual Error Estimation for Interactive Use.
Researchers establishing error estimations based on the
distance of compounds to the training data typically present

(a) In-house cross-validation plots or tables where prediction errors are binned by distance,
900 , , , , i.e., averaging over a large number of predictions, because
the correlation between distances and errors is typically not
too strong when considering individual compounds. When
binning by the distance, one can clearly see how the error
increases as the distance incred4é%ne can fit a function
to this relationship and use it to generate an error prediction
for each prediction the model makes. But how does the user
know what an error prediction of, e.g., 0.6 log unit really
means? In how many cases does the user expect the error to
be larger than the predicted error? How much larger can
errors turn out?

The most commonly used description of uncertainty (such
as measurement errors, prediction errors, etc.) in chemistry,
physics, and other fields is the error bar. Its definition is

based on the assumption that errors follow a Gaussian
° 000 B e Xm0 distribution. When using a probabilistic model that predicts
a Gaussian (i.e., a medrand a standard deviatiom), it
follows that the true value has to be in the interfat o
with 68% confidence, and in the intervial: 20 with 95%

0 1000 2000 3000 4000 5000 6000 7000
distance

(b) In-house blind test

Figure 7. Histograms of Mahalanobis distances from each

compound to the closest compound in the respective training
set. Distances for the cross-validated in-house setup (a) were
calculated for the training/validation-split of one arbitrarily
chosen cross-validation run.

confidence, etc. To evaluate the quality of the predicted error
bars, one can therefore compare with the true experimental
values, and count how many of them are actually within the
g, 20, etc. intervals. (We found this procedure to be more

reliable than using numeric criteria, such as the log prob-

were at no point in time available to the modeling team at ability of the predictive distribution.)
FIRST/idalab. Furthermore, the blind test data stems from  1he Gaussian process model can directly predict error bars.
new drug discovery projects, and thus represents different!n the implementation of random forests used in this study,
structural classes than those present in the training data. the predictive variance is calculated by averaging the variance
The fact that performance decreases when comparing thedf the predictions from the different trees in the forest and
results achieved in cross-validation with the blind test could the average estimated variance from training points found
be taken as a hint that the nonlinear models did overfit to at each tree leaf.
their training data. However, typical symptoms of overfitting, ~ For the linear ridge regression models and the support
like a too large number of support vectors in SVM models, vector machines, error bars were estimated by fitting
were not present. A large fraction of all compounds in the exponential and linear functions to the errors observed when
validation set is, however, very dissimilar to the training data. evaluating the models in cross-validation and the Mahal-
Histograms of Mahalanobis distances from each compoundanobis distances to the closest neighbors in the training set
in the validation to the closest training compound are of the respective split. Since both linear and exponential
presented in Figure 7. We used the same set of descriptorgunctions worked equally well, we chose the simple linear
for both model building and distance calculation. functions to estimate error bars from the distances.
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Figure 8. Predicted error bars can be evaluated by counting how many predictions are actually within a o, 20, etc. environment
(red line) and comparing with the optimal percentage (black line). The vertical green lines indicate the ¢ and 20 environments,
and the corresponding numbers can be found in Table 4.

Table 4. Predicted Error Bars Can Be Evaluated by
Counting How Many Predictions Are Actually within a o,
20, etc. Environment and Comparing with the Optimal

of the final model delivered to Bayer Schering Pharhfa.
The remaining algorithms have been evaluatqubsteriori
after the experimental values for the validation set had been

Percentage? revealed.
environment pred + o pred & 20 In conclusion, using Bayesian models, ensemble models,
optimal pred + ¢ 68.7 95.0 or distance based approaches one can not only identify
GP 67.5 90.4 compounds outside of the models domain of applicability
RR 62.6 88.0 but also quantify the reliability of a prediction in a way that
SVM 63.7 87.9 is intuitively understandable for the user.
forest 62.5 90.2

4.5. Increasing Accuracy by Focusing on the Domain
of Applicability. In section 4.3 we presented statistics
obtained by applying our models to all compounds in the

Plots of the empirical confidence versus the confidence '€SPective test sets, without considering the models’ domain
interval are presented in Figure 8 (red line). The optimal Of @pplicability. In section 4.4 we have evaluated methods
curve is marked by the black line. Theand 2r environ- for quantifying the confidence in predictions, and found that
ments are marked by green lines, with the corresponding this can be achieved in a reliable way. Therefore it should
percentages of predictions within each environment being P& possible to increase model performance by focusing on
listed in Table 4. Predicted error bars of all four models mMore confident predictions or, in other words, on compounds

a A graphical presentation of these results including fractions of o
can be found in Figure 8.

exhibit the correct statistical properties, with the GP [ag
error predictions being closest to the ideal distribution. The
results presented for the GP model stem from a “blind test”
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Figure 9. Mean absolute error achieved when binning by the model based error bar (in the case of the GP and the random
forest) respectively the Mahalanobis distance to the closest point in the training set (linear ridge regression and support vector
machines do not provide error bars). Each bin contains one-seventh (1000 compounds) of the in-house validation set.
Corresponding numbers can be found in Table 5.

on the confidence in the prediction, i.e., the model based the mean absolute error decreases, as compounds in bins with
error bar (GP and random forest) or distance to training higher confidence are considered. In the case of the GP
points (for ridge regression and SVM), such that each of model, the mean absolute error decreases from 0.55 to 0.42,
the seven bins contains 1000 compounds (one-seventh ofwhen focusing on the 3000 compounds with the lowest
the in-house validation data). Within each bin (representing predicted error bars. When focusing on the 1000 compounds
a different degree of confidence in the predictions), we with lowest predicted error bars, the mean absolute error can
compute the mean absolute error. For each algorithm testedeven be reduced to only 0.32 log unit.

Table 5. Mean Absolute Error Achieved When Binning by the Model Based Error Bar (for GP and Random Forest)
Respectively the Mahalanobis Distance to the Closest Point in the Training Set (Linear Ridge Regression and SVM, Since
These Methods Do Not Provide Model Based Error Bars)?2

error bar (av in bin) 0.10 0.20 0.29 0.40 0.55 0.72 1.26
MAE GP 0.32 0.41 0.55 0.57 0.57 0.68 0.77
error bar (av in bin) 0.22 0.37 0.47 0.57 0.68 0.85 1.19
MAE (forest) 0.37 0.53 0.59 0.69 0.80 0.95 1.24
distance (av in bin) 448 1021 1534 1986 2428 3057 5256
MAE (RR) 0.43 0.50 0.52 0.62 0.66 0.73 0.73
MAE (SVM) 0.35 0.44 0.50 0.61 0.65 0.73 0.79

2 Bins were chosen such that each contains one-seventh (around 1000 compounds) of the in-house validation set. A graphical representation
of this information can be found in Figure 9.
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In conclusion, focusing on confident predictions, i.e., solvent phase and the hydrocarbon stationary phase. The
compounds within the domain of applicability, allows us to chemicals are retained in proportion to their hydrocarbon
achieve more accurate predictions than we found whenwater partition coefficient, with water-soluble chemicals
validating models on the whole in-house validation set (Table eluted first and oil-soluble chemicals last. This enables the
3). The previously observed decrease in performance relativerelationship between the retention time on a reverse-phase

to the cross-validation on the training data can therefore be column and then-octanol/water partition coefficient to be
avoided. established. The partition coefficient is deduced from the

capacity factok = (t, — tg)/to, wheret, is the retention time

of the test substance atgds the dead time, i.e., the average
N - : time a solvent molecule needs to pass the column. In order
We presented results of modeling lipophilicity using the to correlate the measured capacity fadtaf a compound
Gaussian process methodology on public and in-house datawith its log D, a calibration graph is established. The
The statistical evaluations show that the prediction quality partition coefficients of the test compounds are obtained by
of our GP models compares favorably with four commercial interpolation of the calculated capacity factors on the
tools and three other machine learning algorithms that were cajipration graph using a proprietary software tool “POW
applied to the same sets of data. The positive results achievethetermination”.

with the model on in-house drug discovery compounds are A 1. Apparatus and Materials. Experiments are carried
reconfirmed by a blind evaluation on a large set of measure- out following theOECD Guideline for Testing of Chemicals
ments from new drug discovery projects at Bayer Schering No. 117 A set of 9 reference compounds with known log

5. Summary

Pharma. D- values selected from this guideline is used.
It should be noted that GP models not only are capable of _ '
making accurate predictions but also can provide fully HPLC: Wwaters Alliance HT 2790 with DAD-

and MS-detection

automatic adaptable tools: Using a Bayesian model selection
P 9 Y column: Spherisorb ODS 3 um, 4.6 x 60mm

criterion allows for retraining without user intervention

. mobile phase: methanol/0.01 m ammonium acetate
whenever new data becomes available. As a further advan- buffer (pH 7) 75:25
tage for everyday use in drug discovery applications, GP gead time compound: ~ formamide, stock solution in MeOH
models quantify their domain of applicability in a statistically  test compounds: 10 mM DMSO stock
well founded manner. The confidence of each prediction is reference compounds  acetanilide, 4-methylbenzyl alcohol,
quantified by error bars, an intuitively understood quantity. (stock solutions in methyl benzoate, ethyl benzoate,
This allows both (1) increasing the average accuracy of  MeOH): gaszt.hﬁ'e”el' 1’%’.4'tr'fh'cr’1r°bﬁ”29”e’
predictions by focusing on predictions that are inside the D‘D'T phenyipyricine, friphenylamine,
domain of applicability of the model and (2) judging the
reliability of individual predictions in interactive use. Acknowledgment. ~ The authors gratefully acknowledge
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High performance liquid chromatography (HPLC) is
performed on analytical columns packed with a commercially
available solid phase containing long hydrocarbon chains
chemically bound onto silica. Chemicals injected onto such to
a column move along it by partitioning between the mobile MP0700413

538 MOLECULAR PHARMACEUTICS VOL. 4, NO. 4



