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Abstract: Unfavorable lipophilicity and water solubility cause many drug failures; therefore these
properties have to be taken into account early on in lead discovery. Commercial tools for
predicting lipophilicity usually have been trained on small and neutral molecules, and are thus
often unable to accurately predict in-house data. Using a modern Bayesian machine learning
algorithmsa Gaussian process modelsthis study constructs a log D7 model based on 14556
drug discovery compounds of Bayer Schering Pharma. Performance is compared with support
vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on
7013 new measurements from the last months (including compounds from new projects) 81%
were predicted correctly within 1 log unit, compared to only 44% achieved by commercial
software. Additional evaluations using public data are presented. We consider error bars for
each method (model based error bars, ensemble based, and distance based approaches), and
investigate how well they quantify the domain of applicability of each model.
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1. Introduction
Lipophilicity of drugs is a major factor in both pharma-

cokinetics and pharmacodynamics. Since a large fraction of
drug failures (∼50%)1 results from an unfavorable PC-
ADME/T profile (absorption, distribution, metabolism, ex-

cretion, toxicity), the octanol water partition coefficients log
P and log D are nowadays considered early on in lead
discovery.

Due to the confidentiality of in-house data, makers of
predictive tools are usually not able to incorporate such data
from pharmaceutical companies. Commercial predictive tools
are therefore typically constructed using publicly available
measurements of relatively small and mostly neutral mol-
ecules. Often, their accuracy on the in-house compounds of
pharmaceutical companies is relatively low.2

In our work, we follow a different route to derive models
for lipophilicity that are tailored to in-house data. We use a
modern machine learning tool, a so-called Gaussian process
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model3 (GP), to obtain a nonlinear mapping from descriptors
to lipophilicity. A specific advantage of the tool is its
Bayesian framework for model selection, that provides
theoretically well founded criteria to automatically choose
the “right amount of nonlinearity” for modeling. We can
avoid extensive grid search in cross-validation or expert
intervention to choose optimal parameter settings. Thus, the
process can be fully automated. For the first data analysis
phase, structures do not need to be disclosed, since all
modeling is descriptor based.

Apart from the high performance, the chosen modeling
approach shows another virtue that makes it an excellent tool
for applications in chemistry: GP models have their roots
in Bayesian statistics, and thus can supply the user with an
error bar for each individual prediction. This quantification
of the prediction uncertainty allows reduction of the error
rate, by discarding predictions with large error bars, or by
reconfirming the prediction with a laboratory experiment.
In our work, we also compare these error bars with error
bar heuristics that can be applied to other commonly used
modeling approaches.

Performance is compared with models constructed using
three established machine learning algorithms: support vector
machines, random forests, and linear ridge regression. We
show that the different logP and log D7 models exhibit
convincing prediction performance, both on benchmark data
and on in-house data of drug molecules. We compare our
results with several commercial tools, and show a large
improvement of performance, in particular on the in-house
classes of compounds.

Using machine learning algorithms, one can construct
models of biological and chemical properties of molecules
from a limited set of measurements.4-8 This so-called training
set is used to infer the underlying statistical properties and
select a prediction model. Tuning of (hyper)parameters is
usually performed using cross-validation or resampling

methods. To evaluate the performance of the model, one
should use a set of data that was not used in model building
in any form. In the best case, the model is evaluated in a
blind test, where the modelers do not have access to the held
out data. Instead, the final model is applied to the blind test
data by an independent evaluating team. In normal bench-
mark evaluations, retuning models on held-out data is
possible and typically results in too optimistic results. In
contrast, the blind-test strategy is nearly unbiased, because
“cheating”, i.e., using results on the held-out data for retuning
the model, becomes infeasible. Note however that the blind
test set of data needs to be of somewhat reasonable size,
and should represent the typical application scenario of the
model that is to be evaluated.

GP models have been previously applied in computational
chemistry (our own recent results of modeling aqueous
solubility are presented in refs 5 and 6), but rather small
data sets were used, and typically no blind test was
conducted:

(a) Burden9 learned the toxicity of compounds and their
activity on muscarinic and benzodiazepine receptors using
up to 277 compounds.

(b) Enot et al.10 predicted logP using 44 compounds from
a 1,2-dithiole-3-oneseries.

(c) Tino et al.11 built GP models for logP from a public
data set of 6912 compounds. Here, a blind test was
conducted, but the validation set (provided by Pfizer)
contained only 266 compounds.

This study goes beyond the prior work: Our models were
trained on large sets of public and in-house data (up to 14556
compounds). A blind test was performed by an independent
evaluating team at Bayer Schering Pharma using a set of
7013 drug discovery molecules from recent projects, that
have not been available to the modeling team Fraunhofer
FIRST and idalab. To facilitate reproduction of our results
by other researchers, the complete list of compounds in the
public data set is included in the supporting information to
our initial communication.4

2. Estimating the Domain of Applicability of
Models

A typical challenge for statistical models in the chemical
space is to adequately determine the domain of applicability,
i.e., the part of the chemical space where the model’s
predictions are reliable. To this end several “classical”
approaches exists:Range based methodsare based on

(3) Rasmussen, C. E; Williams, C. K. I.Gaussian Processes for
Machine Learning; MIT Press: Cambridge, MA, 2005.

(4) Schroeter, T.; Schwaighofer, A.; Mika, S.; Ter Laak, A.; Suelzle,
D.; Ganzer, U.; Heinrich, N.; Mu¨ller, K.-R. Predicting lipophilicity
of drug discovery molecules using gaussian process models.
ChemMedChem. URL: http://dx.doi.org/10.1002/cmdc.200700041.

(5) Schroeter, T.; Schwaighofer, A.; Mika, S.; Ter Laak, A.; Suelzle,
D.; Ganzer, U.; Heinrich, N.; Mu¨ller, K.-R. Estimating the domain
of applicability for machine learning qsar rmodels: A study on
aqueous solubility of drug discovery molecules.J. Comput.-Aided
Mol. Des., accepted for publication. URL: http://dx.doi.org/
10.1007/s10822-007-9125-z.

(6) Schwaighofer, A.; Schroeter, T.; Mika, S.; Laub, J.; ter Laak, A.;
Sülzle, D.; Ganzer, U.; Heinrich, N.; Mu¨ller, K.-R. Accurate
solubility prediction with error bars for electrolytes: A machine
learning approach.J. Chem. Inf. Model.2007, 47 (2), 407-424.
URL http://dx.doi.org/10.1021/ci600205g.

(7) Müller, K.-R.; Rätsch, G.; Sonnenburg, S.; Mika, S.; Grimm, M.;
Heinrich, N. Classifying ‘drug-likeness’ with kernel-based learning
methods.J. Chem. Inf. Model.2005, 45, 249-253.

(8) Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; Scho¨lkopf, B.
An introduction to kernel-based learning algorithms.IEEE Trans.
Neural Networks2001, 12 (2), 181-201.

(9) Burden, F. R. Quantitative structure-activity relationship studies
using Gaussian processes.J. Chem. Inf. Comput. Sci.2000, 41
(3), 830-835.

(10) Enot, D. P.; Gautier, R.; Le Marouille, J. Y. Gaussian process:
an efficient technique to solve quantitative structure-property
relationship problems.SAR QSAR EnViron. Res.2001, 12 (5),
461-469.

(11) Tino, P.; Nabney, I.; Williams, B. S.; Lo¨sel, J.; Sun, Y. Non-
linear prediction of quantitative structure-activity relationships.
J. Chem. Inf. Comput. Sci.2004, 44 (5), 1647-1653.
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checking whether descriptors of test set compounds exceed
the range of the respective descriptor covered in training.12,13

A warning message is raised when this occurs. Also,
geometric methodsthat estimate the convex hull of the
training data can be used to further detail such estimates.14

Mind that both these methods are not able to detect “holes”
in the training data, that is, regions that are only scarcely
populated with data. In principle, this can be achieved using
geometric methods in a suitable feature space. To the best
of our knowledge, there exists no published study about this
kind of approach.

If experimental data for some new compounds are avail-
able, error estimates based on thelibrary approach15 can be
used. By considering the closest neighbors in the library of
new compounds with known measurements, it is possible
to get a rough estimate of the bias for the respective test
compound.

Probability density distribution based methodscould,
theoretically, be used to estimate the model reliability.14 Still,
high dimensional density estimation is recognized as an
extremely difficult task, in particular since the behavior of
densities in high dimensions may be completely counterin-
tuitive.16

Distance based methodsand extrapolation mea-
sures2,12,14,17,18consider one of a number of distance measures
(Mahalanobis, Euclidean, etc.) to calculate the distance of a
test compound to its closest neighbor(s) or the whole training
set, respectively. Another way of using distance measures
is to define a threshold and count the number of training
compounds closer than the threshold. Hotelling’s test or the

leverage relies on the assumption that the data follows a
Gaussian distribution in descriptor space and computes the
Mahalanobis distance to the whole training set. Tetko
correctly argues in ref 18 that descriptors have different
relevance for predicting a specific property and concludes
that property specific distances (respectively similarities)
should be used. There is an interesting parallel to Gaussian
process models: When GP models are allowed to assign
weights to each descriptor that enters the model as input,
they implicitly construct a property specific distance measure
and use it both for making predictions and for estimating
prediction errors.

When estimating the domain of applicability withensemble
methods, a number of models are trained on different sets
of data. Typically the sets are generated by (re)sampling from
a larger set of available training data. Therefore the models
will tend to agree in regions of the descriptor space where a
lot of training compounds are available and will disagree in
sparsely populated regions. Alternatively, the training sets
for the individual models may be generated by adding noise
to the descriptors, such that each model operates on a slightly
modified version of the whole set of descriptors. In this case
the models will agree in regions where the predictions are
not very sensitive to small changes in the descriptors and
they will disagree in descriptor space regions where the
sensitivity with respect to small descriptor changes is large.
This methodology can be used with any type of model, but
ensembles of ANNs2,17-20 and ensembles of decision trees13,17

(“random forests”, Breiman21) are most commonly used.

The idea behindBayesian methodsis to treat all quantities
involved in modeling as random variables. By means of
Bayesian inference, thea priori assumptions about param-
eters are combined with the experimental data, to obtain the
a posterioriknowledge. Hence, such models naturally output
a probability distribution, instead of the “point prediction”
in conventional learning methods. Regions of high predictive
variance indicate not only compounds outside the domain
of applicability but also regions of contradictory or scarce
measurements. The most simple and also most widely used
method is the naive Bayes classifier.22,23 Gaussian process

(12) Tropsha, A. Variable selection qsar modeling, model validation,
and virtual screening. InAnnual Reports in Computational
Chemistry; Spellmeyer, D. C., Ed.; Elsevier: Amsterdam, 2006;
Vol. 2, Chapter 7, pp 113-126.

(13) Tong, W.; Xie, Q.; Hong, H.; Shi, L.; Fang, H.; Perkins, R.
Assessment of prediction confidence and domain extrapolation
of two structure-activity relationship models for predicting
estrogen receptor binding activity.EnViron. Health Perspect.2004,
112 (12), 1249-1254.

(14) Netzeva, T. I.; Worth, A. P; Aldenberg, T.; Benigni, R.; Cronin,
M. T. D.; Gramatica, P.; Jaworska, J. S.; Kahn, S.; Klopman, G.;
Marchant, C. A.; Myatt, G.; Nikolova-Jeliazkova, N.; Patlewicz,
G. Y.; Perkins, R.; Roberts, D. W.; Schultz, T. W.; Stanton, D.
T.; van de Sandt, J. J. M.; Tong, W.; Veith, G.; Yang, C. Current
status of methods for defining the applicability domain of
(quantitative) structure-activity relationships.Altern. Lab. Anim.
2005, 33 (2), 1-19.

(15) Kühne, R.; Ebert, R.-U.; Schu¨ürmann, G. Model selection based
on structural similarity-method description and application to water
solubility prediction.J. Chem. Inf. Model. 2006, 46, 636-641.

(16) Silverman, B. W.Density Estimation for Statistics and Data
Analysis; Number 26 in Monographs on Statistics and Applied
Probability; Chapman & Hall: London, 1986.

(17) Bruneau, P.; McElroy, N. R. Generalized fragment-substructure
based property prediction method.J. Chem. Inf. Model.2004, 44,
1912-1928.

(18) Tetko, I. V.; Bruneau, P.; Mewes, H.-W.; Rohrer, D. C.; Poda,
G. I. Can we estimate the accuracy of ADME-tox predictions?
Drug DiscoVery Today2006, 11 (15/16), 700-707.

(19) Göller, A. H.; Hennemann, M.; Keldenich, J.; Clark, T. In silico
prediction of buffer solubility based on quantum-mechanical and
hqsar- and topology-based descriptors.J. Chem. Inf. Model.2006,
46 (2), 648-658.

(20) Manallack, D. T.; Tehan, B. G.; Gancia, E.; Hudson, B. D.; Ford,
M. G.; Livingstone, D. J.; Whitley, D. C.; Pitt, W. R. A consensus
neural network-based technique for discriminating soluble and
poorly soluble compounds.J. Chem. Inf. Model.2003, 43, 674-
679.

(21) Breiman, L. Random forests.Machine Learning2001, 45, 5-32.
URL: http://dx.doi.org/10.1023/A:1010933404324.

(22) Bender, A.; Mussa, H. Y.; Glen, R. C. Screening for dihydrofolate
reductase inhibitors using molprint 2d, a fast fragment-based
method employing the nave bayesian classifier: Limitations of
the descriptor and the importance of balanced chemistry in training
and test sets.J. Biomol. Screening2005, 10 (7), 658-666. URL:
http://jbx.sagepub.com/cgi/content/abstract/10/7/658.
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regression and classification are more sophisticated Bayesian
methods, see section 3.5.4.

In the present study, we use the Bayesian Gaussian process
models, ensembles, and distance based methods. All of these
can handle empty regions in descriptor space and quantify
their confidence, rather than just marking some predictions
as possibly unreliable. Confidence estimates will be presented
in a form that is intuitively understandable to chemists and
other scientists.

2.1. One-Dimensional Examples.Figure 1 shows a
simple one-dimensional example of the four different
methods of error estimation we use in this study. The sine
function (shown as a blue line in each subplot) is to be
learned. The available training data are 10 points marked
by black crosses. These are generated by randomly choosing
x-values and evaluating the sine function at these points. We
simulate measurement noise by adding Gaussian distributed
random numbers with standard deviation 0.2 to they-values.

The random forest, Figure 1a, does provide a reasonable
fit to the training points (yet the prediction is not smooth,
due to the space dividing property of the decision trees).
Predicted errors are acceptable in the vicinity of the training
points, but overconfident when predictions far from the
training points are sought. It should be noted that the behavior
of error bars in regions outside of the training data depends
solely on the ensemble members on the boundary of the
training data. If the ensemble members, by chance, agree in
their prediction, an error bar of zero would be the result.

The linear model, Figure 1b, clearly cannot fit the points
from the nonlinear function. Therefore, the distance based
error estimations are misleading: Low errors are predicted
in regions close to the training points, but the actual error is
quite large due to the poorly fitting model. This shows that
the process of error estimation should not be decoupled from
the actual model fitting: The error estimate should also
indicate regions of poor fit.

The support vector machine, Figure 1c, adapts to the
nonlinearity in the input data and extrapolates well. The error
estimation (the same distance based procedure as described
for the real data, section 4.4) produces slightly conservative
(large) error bars in the region close the training points, and
too small errors when extrapolating.

The Gaussian process, Figure 1d, also captures the
nonlinearity in the input data and is able to extrapolate.
Predicted errors are small in the region close to the training
points and increase strongly enough in the extrapolation
region.

3. Methods and Data
3.1. Methodology Overview.The training procedure is

outlined in Figure 2. We use Corina24 to generate a 3D
structure for each molecule. Molecular descriptors are
calculated using the Dragon25 software. Finally, a number
of machine learning algorithms are used to “train” models,
i.e., to infer the relationship between the descriptors and the
experimental values for logP and logD7.

To make predictions for new compounds, structures are
again converted to 3D and descriptors are calculated. From
the descriptors of each molecule, the model generates a
prediction of logP and/or logD7, and in case of the Gaussian
process and random forest also a confidence estimate (error
bar).

3.2. Data Preparation. 3.2.1. Multiple Measurements.
If multiple measurements exist for the same compound, we

(23) Sun, H. An accurate and interpretable bayesian classification model
for prediction of herg liability.ChemMedChem2006, 1 (3), 315-
322.

(24) Sadowski, J.; Schwab, C.; Gasteiger, J.Corina V3.1; Erlangen,
Germany.

(25) Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M.DRAGON
V1.2; Milano, Italy.

Figure 1. The four different regression models employed in this study are trained on a small number of noisy measurements
(black crosses) of the sine function (blue line). Predictions from each model are drawn as solid red lines, while dashed red lines
indicate errors estimated by the respective model (in case of the Gaussian process and random forest) or a distance based
approach (in case of the support vector machine and ridge regression model).

Figure 2. The process of model building.
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merge them as described in the following to obtain a
consensus value for model building. For each compound we
generate the histogram of experimental values. Characteristic
properties of histograms are the spread of values (y-spread)
and the spread of the bin heights (z-spread). If all measured
values are similar (smally-spread), the median value is taken
as consensus value. If a group of similar measurements and
smaller number of far apart measurements exists, both
y-spread andz-spread are large. In this case we treat the far
apart measurements as outliers, i.e., we remove them and
then use the median of the agreeing measurements as
consensus value. If an equal number of measurements
supports one of two (or more) far apart values (highy-spread
and zeroz-spread), we discard the compound. Initial experi-
ments suggested that 0.5 (on the measurements log-scale) is
a suitable value for the threshold between small and large
y-spreads.

3.2.2. Dataset 1: In-House.Dataset 1 consists of 14556
drug discovery compounds of Bayer Schering Pharma (Table
1). logD was measured following the experimental procedure
described in section A.

For the majority of compounds, logD was measured at
pH ) 7.0. For about 600 compounds logD was measured
at pH ) 7.4. Although for particular compounds with pKa

values close to pH) 7 one can expect deviations in logD
of up to 0.4 (extreme case), first experiments showed that
building separate models is not necessary. No negative
impact on the model accuracy was observed when the
measurements performed at pH) 7.4 are included in the
larger set.

3.2.3. Dataset 2: In-House Validation.Dataset 2 is a
set of 7013 new measurements of drug discovery molecules
of Bayer Schering Pharma that were collected in the months
after dataset 1 had been measured, and thus also includes
compounds from new projects. logD was measured follow-
ing the same experimental procedure as was used for dataset
1, see section A.

3.2.4. Dataset 3: Public.This set contains measurements
of log P for 7926 unique compounds extracted from the

Physprop26 and Beilstein27 databases. logD measurements
performed at various pH values are often reported as logP
in the literature, despite the fact that logP applies, by
definition, only to a molecule in its neutral form (i.e., the
pH of the solution has to be adjusted so that the molecule is
neutral). To avoid these wrongly reported logP values, the
set was restricted to compounds predicted to be completely
neutral at pH 2 to 11 by ACDLabs v9, since, for these
compounds, logD values in the given pH ranges coincide
with the correct logP values.

3.2.5. Differences between In-House and Public Data.
Histograms of the molecular weight for each dataset are given
in Figure 3. The median of the molecular weight is 227 g/mol
for the public dataset, 432 g/mol for the in-house set, and
405 g/mol for the in-house validation set (marked by vertical
green lines in the plots). As we can see from the histogram,
more than 90% of the compounds in the public set have a
molecular mass lower than 400 g/mol, that is well below
the median of the molecular mass for the two in-house sets
of data. In this study, we separately evaluate models on the
public and in-house sets of data. In principle, data from
internal and external sources can be combined. However,
care has to be taken when evaluating models on mixed sets,
since such models typically perform well on compounds with
low molecular weight (see section 4.2) but are less accurate
for the larger compounds relevant to drug discovery (see
section 4.3).

3.3. Training and Validation Setups. 3.3.1. Cross-
Validation. On the in-house and public set of data, models
are evaluated in leave 50% out cross-validation, i.e., the data
is randomly split into two halves. A model is trained on the
first half and evaluated on the other half. This is repeated
with the two halves of the validation set exchanged, so that
predictions for all compounds in the set are generated. The
overall procedure is then repeated 10 times with a different

(26) Physical/Chemical Property Database (PHYSPROP); Syracuse,
NY.

(27) Beilstein CrossFire Database; San Ramon, CA.

Table 1. Summary of the Different Setups That Are Used for Performance Evaluationa

a See section 3.3 for a description and section 3.2 for details on the individual data sets.

articles Schroeter et al.

528 MOLECULAR PHARMACEUTICS VOL. 4, NO. 4



random split. Each prediction is an out-of-sample prediction,
made by a model that has not seen the particular compound
in its training data.

3.3.2. Blind Test.Gaussian process models built by the
modelers at Fraunhofer FIRST and idalab on the in-house
set of data were evaluated by researchers at Bayer Schering
Pharma on thein-houseValidation set of data. At this point
in time, the modelers had no knowledge of the nature or log
D values of the validation set. Later, the validation data was
revealed to the modelers and used as an external validation
set to assess the performance of other types of models.

3.4. Molecular Descriptors.We use the Dragon descrip-
tors by Todeschini et al.28 They are organized in 20 blocks
and include, among others, constitutional descriptors, topo-
logical descriptors, walk and path counts, eigenvalue-based
indices, functional group counts. and atom-centered frag-
ments. A full list including references can be found online.29

As one of their most pronounced features, Gaussian
process models allow the assignment of weights to each
descriptor that enters the model as input. The similarity for
two compounds as computed by the GP model takes into
account that theith descriptor contributes to the similarity
with weight wi (see 3.5.4). These weights are chosen
automatically during model fitting and can then be inspected
in order to get an impression of the relevance of individual
descriptors.

We found that using a small (<50) set of descriptors
results in only slightly decreased accuracy when comparing
to models built on the full set of 1664 descriptors. The error
predictions, however, turn out to be too optimistic in this
case. Including whole blocks containing important descriptors
leads to both accurate predictions and accurate error estima-
tions (see section 4.1). In this study, we used the full Dragon
blocks 1, 2, 6, 9, 12, 15, 16, 17, 18, and 20. A discussion of
the importance of individual descriptors can be found in
section 4.1.

3.5. Machine Learning Methods. 3.5.1. Introductory
Remarks.Since the application of Gaussian process regres-
sion is still relatively new in the field of chemoinformatics,
we chose to explain and illustrate the modeling idea. Support
vector machines are seen as established, but still deserve
some discussion due to interesting parallels and differences
with the Bayesian GP approach.

Linear ridge regression, decision trees, and ensembles of
trees (random forests) are considered established methodss
here we mainly note how the employed implementation
differs from the original algorithm, for which the reader is
referred to the literature.

3.5.2. Linear Ridge Regression.Ridge regression com-
bines a linear model with a regularization term that ef-
fectively shrinks coefficients of the model toward zero. This
is particularly important for our application since a standard

(28) Todeschini, R.; Consonni, V.Handbook of Molecular Descriptors;
John Wiley & Sons, Ltd.: Chichester, 2000.

(29) Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Dragon for
windows and linux 2006. URL: http://www.talete.mi.it/help/
dragon_help/ (accessed 14 May 2006).

Figure 3. Histograms of molecular weight. Vertical green lines
mark the median of the molecular weight of the respective
data set.
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linear model runs into problems when descriptors are
correlated. We choose the complexity parameterλ that
controls the amount of shrinkage by grid search in nested
cross-validation.

3.5.3. Random Forest.A modified version of the random
forests method of Breiman21 is employed. Trees are con-
structed without bagging or bootstrapping, and pruning of
individual trees is done using a CART-style error-size
tradeoff.

The predictive variance is calculated by averaging the
variance of the predictions from the different trees in the
forest and the average estimated variance from training points
found at each tree leaf.

3.5.4. Gaussian Process Regression.Gaussian process
(GP) models have their origin30 in the field of Bayesian
statistics. A description of the methodology, including
mathematical derivations, can be found in Schwaighofer et
al.6 For in-depth coverage we refer the reader to a recent
book by Rasmussen.3

Figure 4 illustrates the principles behind GP models:
Before having measured logD values, any relationship
between the descriptor (in this 2-dimensional example, only
one descriptor is used and plotted on thex-axis) and logD
(y-axis) is equally likely. This is represented by an infinitely
large family of functions that map from descriptor space to
log D space. The family is described by aGaussian process
prior, and 25 examples are shown in Figure 4 (left).

When training the model with logD values for a number
of molecules (symbolized by black crosses in Figure 4
(middle)), we discard (or put lower weight on) all functions
that do not pass near by these known data points.

To predict logD values for new molecules, we just average
over the functions remaining in the pool (the red line in
Figure 4 (right)) and read off the value corresponding to the
new molecules’ descriptors. To predict error bars, we
calculate the standard deviation of the functions remaining
in the pool at the position given by each new molecule’s
descriptors. The 2σ environment for all descriptor values on
the x-axis is marked by the red region in Figure 4 (right).
Close to known points, the uncertainty is small, but not
zero: Measurements are assumed to be noisy. The uncer-
tainty increases far from known points and in regions where
measurements disagree.

Effectively, all the steps described above are not imple-
mented by sampling, but via integral operations.6 The
Bayesian concept of a weighed average of functions with a
certain mean (logD prediction) and standard deviation (error
bar) is, however, preserved.

In order to derive the GP model prediction, letf be a
function that depends on a vectorx of d molecular descriptors
and outputs logD, i.e., f(x) ≈ log D(x). We assume that
each possible functionf is a realization of a Gaussian
stochastic process, and thus can be fully described by
considering pairs of compoundsx andx′. By the properties
of the Gaussian process, functional valuesf(x1), ..., f(xn) for
any finite set ofn points form a Gaussian distribution. The
covariance for each pair is then given by the covariance
function,

which has a role similar to the kernel function in support
vector machines8,31and other kernel based learning methods.
Any previous knowledge of the phenomenon to be predicted
is expressed in the covariance functionk.

For n compounds the actual data consist ofn log D
measurements,y1, ..., yn andn descriptor vectors, x1, ..., xn

(each of lengthd). Assuming that measurements are noisy,
we relate then measured values to the true logD by

whereε is Gaussian noise with standard deviationσ. σ can
be a scalar, meaning that all measurements are equally noisy.
σ can also be a vector, allowing, in principle, the use of a
different noise level for each individual compound. In
practice we found it useful to assume equal measurement
noise for groups of compounds that, e.g., have been measured
in the same laboratory. In this way, model performance can
be improved and we can learn the noise level resulting from
different (or uniform) experimental procedures directly from
the data.6

Applying a number of transformations and steps of
statistical inference6 we find that the predicted logD for a
new compoundx* follows a Gaussian distribution with mean
fh(x*) and standard deviation stdf(x*), with

(30) O’Hagan, A. Curve fitting and optimal design for prediction.J.
R. Stat. Soc., Ser. B: Methodological1978, 40 (1), 1-42.

(31) Scho¨lkopf, B.; Smola, A. J.Learning with Kernels; MIT Press:
Cambridge, MA, 2002.

Figure 4. Bayesian modeling with Gaussian processes.

cov(f(x),f(x′)) ) k(x,x′) (1)

yi ) f(xi) + ε (2)
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Coefficients Ri are found by solving a system of linear
equations,y ) (K + σ2I)R, with Kij ) k(xi,xj). For the
standard deviation,Lij are the elements of the matrixL )
(K + σ2I)-1.

Details on inferring the parameters of the covariance
function k and the measurement noiseσ can be found in
Schwaighofer et al.6

In direct implementations, memory demand increases
quadratically with the number of data points. Recent
developments of approximation and sampling techniques32

allow the training of Gaussian process models on thousands
of data points. For the data sets used in this study, we precede
the actual GP training by a k-means clustering, such that
each cluster contains up to 5000 compounds and train one
GP per cluster. When applying the model, predictions from
the individual GP models are generated and the prediction
with the highest confidence (smallest error bar) is chosen.

3.5.5. Support Vector Regression.Support vector ma-
chines for regression and classification are based on the
principle of structural risk minimization. Out of a certain
class of functions we want to find the function that minimizes
some notion of error, measured by the so-called loss function.
Using a very large class of functions (i.e., a very complex
model) one can perfectly fit to the training data, but the
resulting function will not generalize to new, unseen data
(over-fitting). On the contrary, using a small class of
functions (simple, e.g., linear models) one may not be able
to fit the data reasonably, again resulting in inaccurate
predictions.

Choosing a function class with functions of the right
complexity can be achieved by regularization: We combine
the empirical loss on the training data with a penalty term
for the complexity and then minimize the sum (objective
function). Under certain assumptions (for example, that the
training and test data are sampled from the same distribution),
it can be proven that this way of choosing the function class
leads to an optimal model.33-35

In the following we will first describe the idea behind
linear SVR and then generalize to the nonlinear case.

Given a vectorx of descriptors for a compound, the
quantity of interesty (in our case logD) will be predicted
asy ) f(x). Linear SVM finds a predictorf(x) ) wTx + b,

such that the empirical error and the norm of the weight
vector w are minimal. We employ anε-insensitive loss
function which does not penalize deviations from the
measured value that are smaller thanε. Model training is
done by solving the convex quadratic optimization problem:

subject to

The thresholdε from the loss function manifests in the
constraints. “Slack variables”ê are introduced and penalized
in the objective function such that deviation by more thanε

increases the objective function only linearly. This reduces
the influence of outliers in the data. The constantsε andC
are chosen by cross-validation. In principle, it is also possible
to use more sophisticated approaches36 that compute SVR
solutions for multiple parameter values in an efficient
manner.

Employing the so-called kernel trick8,35one can generalize
to nonlinear models. Functionsf of the form f(x) ) ∑i)1

n

Rik(xi,x) + b can be generated by rewriting the liner SVM
equations such that the descriptorsx only appear inside scalar
products (xi

Txj). These scalar products can then be replaced
by a kernel functionk(xi,xj), that implicitly maps the
descriptors into a high-dimensional feature-space and com-
putes the scalar product there. There are many interesting
connections between SVM and GP methods. One of them
is that the valid kernel functions for support vector algorithms
are also valid covariance functions for a GP model and vice
versa. In this study, we use support vector regression with
an RBF kernel function.6,8

4. Results and Discussion
4.1. Choice of Descriptors.Gaussian process models can

assign weights to each descriptor that enters the model as
input (see section 3.4 for details). The 30 interpretable
descriptors with highest weight are clearly connected with
log P and log D7. They include the sum of geometrical
distances between pairs of oxygen atoms, counts of various
functional groups [donor atoms for H-bonds (N and O); H
attached to heteroatom; hydroxyl groups; hydroxyl groups
in phenol, enol, carboxyl; ether groups; oxygen atoms;
benzene-like rings; carbon atoms; quaternary nitrogen;
tertiary amines; secondary amines], and a number of continu-
ous quantities [topological polar surface area using N, O polar
contributions; topological polar surface area using N, O, S,
P polar contributions; mean atomic van der Waals volume
(scaled on carbon atom); harmonic oscillator model of
aromaticity index total; molar refractivity; hydrophilic fac-
tor;37 molecular weight and 11 other measures of size, e.g.,
sum of conventional bond orders, sum of atomic van der
Waals volumes, and size indices].

(32) Quionero-Candela, J.; Rasmussen, C. E. A unifying view of sparse
approximate Gaussian process regression.J. Machine Learn. Res.
2005, 6 (December), 1939-1959. URL: http://www.jmlr.org/
papers/volume6/quinonero-candela05a/quinonero-candela05a.
pdf.

(33) Vapnik, V. N.Statistical Learning Theory; Wiley: New York,
1998.

(34) Cristianini, N.; Shawe-Taylor, J.An Introduction to Support Vector
Machines; Cambridge University Press: Cambridge, U.K., 2000.

(35) This reference was deleted on revision.

min
w,b,ê

1

2
||w||2 + C ∑

i)1

n

êi

|f(xi) - yi| e ε + êi, êi g 0, i ) 1, ...,n

fh(x*) ) ∑i)1
n Rik(x*,xi) (3)

stdf(x*) ) xk(x*,x*) - ∑i)1
n ∑j)1

n k(x*,xi) k(x*, xj)Lij
(4)
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Figure 5. Scatter plots for GP, SVM, ridge regression, and random forests (one arbitrarily chosen cross-validation run each)
and all four commercial tools on the public data set (Physprop/Beilstein).
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We found that using a small set of descriptors results in
only slightly decreased accuracy when comparing to models
built on the full set of 1664 descriptors. The error predictions,
however, turn out to be too optimistic. In other words: The
log D7 is predicted accurately for most compounds, but the
model cannot correctly detect whether the test compound
has, for example, additional functional groups. These func-
tional groups might not have occurred in the training data,
and were thus not included by the feature selection step. In
the test case, the information about these additional functional
groups is important since it helps to detect that these
compounds are different from those the model has been
trained on, i.e., the error bar should increase. Including whole
blocks containing important descriptors leads to both accurate

predictions and accurate error estimations. For, e.g., a GP
model thesesurplusdescriptors will get only a small weight
during trainingsbut the weight will not be zero. In conse-
quence the model has more information than it needs for
predicting log D7 and will respond to new properties
(functional groups etc.) of molecules by estimating a larger
prediction error.

In this study, we used the full Dragon blocks 1, 2, 6, 9,
12, 15, 16, 17, 18, and 20, thereby including constitutional
descriptors, topological descriptors, 2D autocorrelations,
topological charge indices, geometrical descriptors, WHIM
descriptors, GETAWAY descriptors, functional group counts,
atom-centered fragments, and molecular properties. With this
set of 904 descriptors, the model’s accuracy is only slightly
smaller than the accuracy of models built on all 1664
descriptors, but the computational cost and memory require-
ments are significantly reduced, and predicted error bars
display close to ideal statistical properties (see section 4.4
and section 4.5).

4.2. Overall Accuracy: Public Data. The accuracy
achieved on the public data set using different machine
learning methods is compared with the performance of
ACDLabs v9, Wskowwin v1.41, AdmetPredictor v1.2.3, and
QikProp v2.2 in Table 2. The row labeled “baseline” lists
the performance achieved when constantly predicting the
average logP of the dataset. Scatter plots for all methods
(one arbitrarily chosen cross-validation run each) and all four
commercial tools are given in Figure 5.

The support vector machine and random forest models
exhibit similarly high performance (91.6% respectively
87.6% correct within 1 log unit) as the three best performing
commercial tools ACDLabs v9, Wskowwin v1.41, and
AdmetPredictor v1.2.3 (86.9% to 91.6% correct(1). The
Gaussian process model performs slightly better (92.6%(1)
than the best performing commercial tool (91.6%(1). The
linear ridge regression model predicted a number of logP
values as high as 1016. For all plots and statistical evaluations,
predictions from the linear ridge regression model were
postprocessed, setting 1.5 times the highest/lowest logP
values in the training data as upper/lower limits. Thus, error
measures like mean absolute error can be used in a more
meaningful way. 84.4% of all predictions were correct within
1 log unit. In general, we found that the nonlinear methods
are more accurate and, in particular, produce fewer “far off”
predictions, as can be seen in Figure 5a,c,d.

Examining Figure 5e-h, we find that all four commercial
tools produce a number of outliers. ACDLabs v9 and
Wskowwin v1.41 generate fewer than 10 very “far off”

(36) Wang, G.; Yeung, D.-Y.; Lochovsky, F. H. Two-dimensional
solution path for support vector regression. InProceedings of
ICML06; De Raedt, L., Wrobel, S., Eds.; ACM Press: New York,
NY, 2006; pp 993-1000. URL: http://www.icml2006.org/icml_
documents/camera-ready/125_Two_Dimensional_Solu.pdf.

(37) Todeschini, R.; Gramatica, P. Linear and nonlinear functions on
modeling of aqueous solubility of organic compounds by two
structure representation methods.Quant. Struct. Act. Relat. 1997,
16, 116-125.

Table 2. Accuracy Achieved on the Public Data Sets
Physprop/Beilstein Using Different Machine Learning
Methods Compared with the Performance of Commercial
Toolsa

public data Physprop/Beilstein MAE RMSE % ( 1

Gaussian process 0.38 0.66 92.6
linear ridge regression 0.59 0.89 84.4
support vector machine 0.40 0.71 91.8
random forest 0.52 0.82 87.6

ACDLabs v9 0.43 0.90 89.2
Wskowwin v1.41 0.25 0.90 91.6
AdmetPredictor v1.2.3 0.65 1.32 86.9
QikProp v2.2 0.76 1.23 79.6

baseline: predict mean log P 1.68 2.24 40.7

a MAE, RMSE, and % ( 1 denote the mean absolute error, the
root mean squared error, and the percentage of compounds predicted
with less than 1 log unit error.

Table 3. Accuracy Achieved Using Gaussian Process
Models, Support Vector Machines, Linear Ridge
Regression, and Random Forests for the In-House
Datasets, Compared with the Performance of ACDLabs v9a

MAE RMSE % ( 1

In-House Cross-Validation
Gaussian process 0.41 0.66 90.7
linear ridge regression 0.53 0.96 88.3
support vector machine 0.44 0.70 89.8
random forest 0.55 0.80 84.4

ACDLabs v9 1.41 1.90 46.6

baseline: predict mean log D7 1.13 1.47 53.4

In-House Blind Test
Gaussian process 0.60 0.82 81.2
linear ridge regression 0.60 0.83 82.2
support vector machine 0.58 0.81 81.6
random forest 0.74 1.00 74.8

ACDLabs v9 1.40 1.79 44.2

baseline: predict mean log D7 1.17 1.51 51.7

a MAE, RMSE, and % ( 1 denote the mean absolute error, the
root mean squared error, and the percentage of compounds predicted
with an error less than 1.
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predictions, but their logP is overestimated by more than
10 orders of magnitude. For∼50 compounds the predicted
values are too high by 2 or 3 log units. Still, the overall
performance of both ACDLabs v9 and Wskowwin v1.41 is
good, which is also reflected in the low MAE and RMSE,
see Table 2. Neither QikProp v2.2 nor AdmetPredictor v1.2.3
produces very “far off” predictions (>10 orders of magni-
tude). For several hundreds of compounds, logP is predicted
too high by 2 or 3 orders of magnitude, reducing the overall
performance (see Table 2).

All four commercial tools have been trained using a
number of compounds that are also included in the Beilstein
and Physprop databases. In these cases the correct value is
reproduced, rather than predicted. This effect can be seen
most clearly in the results for Wskowwin, where many of
the model predictions for the public data are right on the
optimal prediction line. Thus, the presented evaluation is,
most likely, biased in favor of the commercial tools.

Our own results were obtained in 2-fold cross-validation
(train on half of the data, evaluate on the other half), repeated
10 times with different random splits of the data. Therefore,
test and training data tend to have a similar distribution across
different compound classes. This is not the case in the typical
application scenario of such models: In new projects, new
compound classes will be investigated, resulting in less
accurate predictions. To get a realistic estimate of the
performance on unseen data, a “blind test” evaluation on

data including different compound classes is important. For
models built on the Bayer Schering Pharma in-house data,
we present such an evaluation in the subsequent section.

4.3. Overall Accuracy: In-House Data.The results for
predicting logD7 on Bayer Schering Pharma in-house data
are listed in Table 3. The corresponding scatter plots are
given in Figure 6. When evaluated in 2-fold cross-validation
on the in-house data (see Table 3, top), the Gaussian process
model, the support vector machine, and the linear ridge
regression yielded good results (88.3% to 90.7% correct
within 1 log unit), with the Gaussian process model perform-
ing best (90.7%(1). This model was then validated in blind
evaluation at Bayer Schering Pharma on a set of 7013 new
measurements from the last months. Later, the data was made
available to the modeling team at Fraunhofer and idalab and
other methods were evaluated, treating the former blind test
data as an external validation set. These results are given in
Table 3 (bottom). Among the commercial tools that were
available to us, only ACDLabs is able to calculate logD7,
and can thus be used as a benchmark.

With ACDLabs v9, only 44.2% of the compounds are
predicted correctly within 1 log unit. Mind that ACD has
been trained on shake-flask measurements, while the in-house
measurements used in this study were performed with the
HPLC methodology described in section A. With our tailored
models, we achieved 81.2% to 82.2% correct predictions.
These are very good results, considering that the structures

Figure 6. Scatter plots for Gaussian process and ACDLabs v9 on in-house validation data in blind test (subplots a, b) and on
in-house data in cross-validation (subplots c, d).
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were at no point in time available to the modeling team at
FIRST/idalab. Furthermore, the blind test data stems from
new drug discovery projects, and thus represents different
structural classes than those present in the training data.

The fact that performance decreases when comparing the
results achieved in cross-validation with the blind test could
be taken as a hint that the nonlinear models did overfit to
their training data. However, typical symptoms of overfitting,
like a too large number of support vectors in SVM models,
were not present. A large fraction of all compounds in the
validation set is, however, very dissimilar to the training data.
Histograms of Mahalanobis distances from each compound
in the validation to the closest training compound are
presented in Figure 7. We used the same set of descriptors
for both model building and distance calculation.

In a typical cross-validation run on the in-house data set,
50% of the compounds have a nearest neighbor closer than
1100 units, see Figure 7, top. In the blind test set, less than
25% of the compounds have neighbors closer that 1100 units,
see Figure 7, bottom.

This supports our hypothesis that the difference in
performance between the cross-validation results and the
blind test is caused by a large number of compounds being
dissimilar to the training set compounds. Therefore it should
be possible to achieve higher performance by focusing on
compounds that are clearly inside the domain of applicability
of the respective model. We investigate this question in
section 4.5.

4.4. Individual Error Estimation for Interactive Use.
Researchers establishing error estimations based on the
distance of compounds to the training data typically present
plots or tables where prediction errors are binned by distance,
i.e., averaging over a large number of predictions, because
the correlation between distances and errors is typically not
too strong when considering individual compounds. When
binning by the distance, one can clearly see how the error
increases as the distance increases.14,17One can fit a function
to this relationship and use it to generate an error prediction
for each prediction the model makes. But how does the user
know what an error prediction of, e.g., 0.6 log unit really
means? In how many cases does the user expect the error to
be larger than the predicted error? How much larger can
errors turn out?

The most commonly used description of uncertainty (such
as measurement errors, prediction errors, etc.) in chemistry,
physics, and other fields is the error bar. Its definition is
based on the assumption that errors follow a Gaussian
distribution. When using a probabilistic model that predicts
a Gaussian (i.e., a meanfh and a standard deviationσ), it
follows that the true value has to be in the intervalfh ( σ
with 68% confidence, and in the intervalfh ( 2σ with 95%
confidence, etc. To evaluate the quality of the predicted error
bars, one can therefore compare with the true experimental
values, and count how many of them are actually within the
σ, 2σ, etc. intervals. (We found this procedure to be more
reliable than using numeric criteria, such as the log prob-
ability of the predictive distribution.)

The Gaussian process model can directly predict error bars.
In the implementation of random forests used in this study,
the predictive variance is calculated by averaging the variance
of the predictions from the different trees in the forest and
the average estimated variance from training points found
at each tree leaf.

For the linear ridge regression models and the support
vector machines, error bars were estimated by fitting
exponential and linear functions to the errors observed when
evaluating the models in cross-validation and the Mahal-
anobis distances to the closest neighbors in the training set
of the respective split. Since both linear and exponential
functions worked equally well, we chose the simple linear
functions to estimate error bars from the distances.

Figure 7. Histograms of Mahalanobis distances from each
compound to the closest compound in the respective training
set. Distances for the cross-validated in-house setup (a) were
calculated for the training/validation-split of one arbitrarily
chosen cross-validation run.
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Plots of the empirical confidence versus the confidence
interval are presented in Figure 8 (red line). The optimal
curve is marked by the black line. Theσ and 2σ environ-
ments are marked by green lines, with the corresponding
percentages of predictions within each environment being
listed in Table 4. Predicted error bars of all four models
exhibit the correct statistical properties, with the GP logD
error predictions being closest to the ideal distribution. The
results presented for the GP model stem from a “blind test”

of the final model delivered to Bayer Schering Pharma.4-8

The remaining algorithms have been evaluateda posteriori,
after the experimental values for the validation set had been
revealed.

In conclusion, using Bayesian models, ensemble models,
or distance based approaches one can not only identify
compounds outside of the models domain of applicability
but also quantify the reliability of a prediction in a way that
is intuitively understandable for the user.

4.5. Increasing Accuracy by Focusing on the Domain
of Applicability. In section 4.3 we presented statistics
obtained by applying our models to all compounds in the
respective test sets, without considering the models’ domain
of applicability. In section 4.4 we have evaluated methods
for quantifying the confidence in predictions, and found that
this can be achieved in a reliable way. Therefore it should
be possible to increase model performance by focusing on
more confident predictions or, in other words, on compounds
clearly inside the domain of applicability.

In Figure 9 we present a histogram-like bar plot obtained
in the following way: We assign compounds to bins based

Figure 8. Predicted error bars can be evaluated by counting how many predictions are actually within a σ, 2σ, etc. environment
(red line) and comparing with the optimal percentage (black line). The vertical green lines indicate the σ and 2σ environments,
and the corresponding numbers can be found in Table 4.

Table 4. Predicted Error Bars Can Be Evaluated by
Counting How Many Predictions Are Actually within a σ,
2σ, etc. Environment and Comparing with the Optimal
Percentagea

environment pred ( σ pred ( 2σ

optimal pred ( σ 68.7 95.0
GP 67.5 90.4
RR 62.6 88.0
SVM 63.7 87.9
forest 62.5 90.2

a A graphical presentation of these results including fractions of σ
can be found in Figure 8.
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on the confidence in the prediction, i.e., the model based
error bar (GP and random forest) or distance to training
points (for ridge regression and SVM), such that each of
the seven bins contains 1000 compounds (one-seventh of
the in-house validation data). Within each bin (representing
a different degree of confidence in the predictions), we
compute the mean absolute error. For each algorithm tested,

the mean absolute error decreases, as compounds in bins with
higher confidence are considered. In the case of the GP
model, the mean absolute error decreases from 0.55 to 0.42,
when focusing on the 3000 compounds with the lowest
predicted error bars. When focusing on the 1000 compounds
with lowest predicted error bars, the mean absolute error can
even be reduced to only 0.32 log unit.

Table 5. Mean Absolute Error Achieved When Binning by the Model Based Error Bar (for GP and Random Forest)
Respectively the Mahalanobis Distance to the Closest Point in the Training Set (Linear Ridge Regression and SVM, Since
These Methods Do Not Provide Model Based Error Bars)a

error bar (av in bin) 0.10 0.20 0.29 0.40 0.55 0.72 1.26
MAE GP 0.32 0.41 0.55 0.57 0.57 0.68 0.77

error bar (av in bin) 0.22 0.37 0.47 0.57 0.68 0.85 1.19
MAE (forest) 0.37 0.53 0.59 0.69 0.80 0.95 1.24

distance (av in bin) 448 1021 1534 1986 2428 3057 5256
MAE (RR) 0.43 0.50 0.52 0.62 0.66 0.73 0.73
MAE (SVM) 0.35 0.44 0.50 0.61 0.65 0.73 0.79

a Bins were chosen such that each contains one-seventh (around 1000 compounds) of the in-house validation set. A graphical representation
of this information can be found in Figure 9.

Figure 9. Mean absolute error achieved when binning by the model based error bar (in the case of the GP and the random
forest) respectively the Mahalanobis distance to the closest point in the training set (linear ridge regression and support vector
machines do not provide error bars). Each bin contains one-seventh (1000 compounds) of the in-house validation set.
Corresponding numbers can be found in Table 5.
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In conclusion, focusing on confident predictions, i.e.,
compounds within the domain of applicability, allows us to
achieve more accurate predictions than we found when
validating models on the whole in-house validation set (Table
3). The previously observed decrease in performance relative
to the cross-validation on the training data can therefore be
avoided.

5. Summary
We presented results of modeling lipophilicity using the

Gaussian process methodology on public and in-house data.
The statistical evaluations show that the prediction quality
of our GP models compares favorably with four commercial
tools and three other machine learning algorithms that were
applied to the same sets of data. The positive results achieved
with the model on in-house drug discovery compounds are
reconfirmed by a blind evaluation on a large set of measure-
ments from new drug discovery projects at Bayer Schering
Pharma.

It should be noted that GP models not only are capable of
making accurate predictions but also can provide fully
automatic adaptable tools: Using a Bayesian model selection
criterion allows for retraining without user intervention
whenever new data becomes available. As a further advan-
tage for everyday use in drug discovery applications, GP
models quantify their domain of applicability in a statistically
well founded manner. The confidence of each prediction is
quantified by error bars, an intuitively understood quantity.
This allows both (1) increasing the average accuracy of
predictions by focusing on predictions that are inside the
domain of applicability of the model and (2) judging the
reliability of individual predictions in interactive use.

A. Appendix: Measuring log D7 using HPLC
High performance liquid chromatography (HPLC) is

performed on analytical columns packed with a commercially
available solid phase containing long hydrocarbon chains
chemically bound onto silica. Chemicals injected onto such
a column move along it by partitioning between the mobile

solvent phase and the hydrocarbon stationary phase. The
chemicals are retained in proportion to their hydrocarbon-
water partition coefficient, with water-soluble chemicals
eluted first and oil-soluble chemicals last. This enables the
relationship between the retention time on a reverse-phase
column and then-octanol/water partition coefficient to be
established. The partition coefficient is deduced from the
capacity factork ) (tr - t0)/t0, wheretr is the retention time
of the test substance andt0 is the dead time, i.e., the average
time a solvent molecule needs to pass the column. In order
to correlate the measured capacity factork of a compound
with its log D7, a calibration graph is established. The
partition coefficients of the test compounds are obtained by
interpolation of the calculated capacity factors on the
calibration graph using a proprietary software tool “POW
Determination”.

A.1. Apparatus and Materials. Experiments are carried
out following theOECD Guideline for Testing of Chemicals
No. 117. A set of 9 reference compounds with known log
D7 values selected from this guideline is used.
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MP0700413

HPLC: Waters Alliance HT 2790 with DAD-
and MS-detection

column: Spherisorb ODS 3 µm, 4.6 × 60mm
mobile phase: methanol/0.01 m ammonium acetate

buffer (pH 7) 75:25
dead time compound: formamide, stock solution in MeOH
test compounds: 10 mM DMSO stock
reference compounds

(stock solutions in
MeOH):

acetanilide, 4-methylbenzyl alcohol,
methyl benzoate, ethyl benzoate,
naphthalene, 1,2,4-trichlorobenzene,
2,6-diphenylpyridine, triphenylamine,
DDT
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